Esempio n. 1
0
def stats_calculator(ippath, oppath):
    imglist = [x for x in os.listdir(ippath) if not x.startswith('.')]

    var = ['df_nodes', 'df_points', 'df_segments']
    counts_combined = []
    names = []

    for img in imglist:
        filelist, fileabslist = ListFiles(os.path.join(ippath, img),
                                          extension='.csv')

        df_points = pd.read_csv(os.path.join(ippath, img, 'points.csv'))
        df_segments = pd.read_csv(os.path.join(ippath, img, 'segments.csv'))
        df_nodes = pd.read_csv(os.path.join(ippath, img, 'nodes.csv'))

        opfilename = 'segments_s.csv'
        countfilename = 'count.csv'
        countfilename_combined = 'counts_combined.csv'

        if opfilename not in filelist:
            df_segments_s = SegStats(df_points, df_segments)
            df_segments_s.to_csv(os.path.join(oppath, img, opfilename),
                                 index=False)

        counts = (PNSCount(df_points, df_nodes, df_segments))
        counts_combined.append(counts)
        names.append(img)

    fileinfo = pd.read_csv(os.path.join('./par', 'lung_file_idx.csv'))
    print(names)

    img_group = []
    img_treatment = []
    for i in names:
        img_group.append(
            fileinfo[fileinfo['data_filename'] == i]['genotype'].item())
        img_treatment.append(
            fileinfo[fileinfo['data_filename'] == i]['treatment'].item())

    if countfilename_combined not in imglist:
        df_counts_combined = pd.DataFrame(
            counts_combined, columns=['Points', 'Nodes', 'Segments'])
        df_counts_combined['Names'] = names
        df_counts_combined['Genotype'] = img_group
        df_counts_combined['Treatment'] = img_treatment
        df_counts_combined.to_csv(os.path.join(path, countfilename_combined),
                                  index=False)
Esempio n. 2
0
def convert_xml_csv(ippath, oppath):
    filelist, fileabslist = ListFiles(ippath, extension='.xml')

    for idx, f in enumerate(filelist):
        filename = f.replace('.xml', '')
        ip = os.path.join(ippath, f)
        op = os.path.join(oppath, filename)

        print(ip)
        print(op)

        # create path
        if filename not in os.listdir(oppath):
            DirCheck(op)

            # convert *.xml to *.csv
            csv_all = MSXmlReader(ip)

            # save each spreadsheet into individual *.csv file
            for key, value in csv_all.items():
                oppath_tmp = os.path.join(op, key + '.csv')
                value.to_csv(oppath_tmp, index=False)
Esempio n. 3
0
# create grouped filename and file path
colors = {'wildtype': 'red', 'knockout': 'blue'}

group = {'wildtype': 'w', 'knockout': 'k'}
ippath = {
    'stormdata': {
        'dir': stormcsv_path,
        'ext': '.csv',
    }
}

oppath = {'histogram': {'dir': photon_histo_path, 'ext': '.png'}}

# %%
# create filenamelist
filenamelist = ListFiles(os.path.join(stormcsv_path, str(1)),
                         '.csv')['filelist']
mainfilelist = GetGrpFLs(filenamelist, nchannel, group, ippath, oppath)
pprint.pprint(mainfilelist)

# ----------------------------------------------------- #
# %%
data_list = []
for c in range(nchannel):
    for g in group.keys():
        for i in range(len(mainfilelist[str(c + 1)][g]['filename_ip'])):
            # for i in range(10):
            filepath = mainfilelist[str(c + 1)][g]['stormdata'][i]
            # print(filepath)
            data = pd.read_csv(filepath, header=0, index_col=0)
            data['filename'] = mainfilelist[str(c + 1)][g]['filename_ip'][i]
            data['group'] = g
Esempio n. 4
0
    'nnddata':{
        'dir': nnd_data_path,
        'ext': '.csv',
    }
}

oppath = {
    'summary': {
        'dir': nnd_plot_path,
        'ext': '.png'
    }
}

# %%
# create filenamelist
filenamelist = ListFiles(os.path.join(nnd_data_path, str(1)), '.csv')['filelist']
mainfilelist = GetGrpFLs(filenamelist, nchannel, group, ippath, oppath)
pprint.pprint(mainfilelist)

# concate the data into one dataframe
data_list = []
for c in range(nchannel):
    for g in group.keys():
            for i in range(len(mainfilelist[str(c+1)][g]['filename_ip'])):
                filepath = mainfilelist[str(c+1)][g]['nnddata'][i]
                data = pd.read_csv(filepath, header=0, index_col = 0)
                data['filename'] = mainfilelist[str(c+1)][g]['filename_ip'][i]
                data['group'] = g
                data['channel'] = str(c+1)
                data_list.append(data)
Esempio n. 5
0
# ========================================================

#%%
path = '/Volumes/LaCie_DataStorage/Asensio_Lab'
raw_dir = 'alignment_opencv_01'
sub_dir = 'KO_2_reordered_rename'
ippath = os.path.join(path, raw_dir, sub_dir)
print(ippath)

op_dir = 'alignment_opencv_01_std'
oppath = os.path.join(path, op_dir, sub_dir)

DirCheck(oppath)

#%%
filename, filepath = ListFiles(ippath, '.tif')
print(filepath)

#%%
inten_min = 0.0
inten_max = 0.0
for i in range(len(filename)):
    ipfilepath = os.path.join(ippath, filename[i] + '.tif')
    opfilepath = os.path.join(oppath, filename[i] + '.tif')
    
    ROI = [4352, 3088, 4096, 4096]
    im = Image.open(ipfilepath)
    im_std = Standardize(im, ROI)
    
    if inten_min > np.amin(im_std):
        inten_min = np.amin(im_std)
    'stormdata':{
        'dir': stormcsv_path,
        'ext': '.csv',
    }
}

oppath = {
    'stormdata_th': {
        'dir': csv_th_path,
        'ext': '.csv'
    }
}

# %%
# create filenamelist
filenamelist = ListFiles(os.path.join(stormcsv_path, str(1)), '.csv')['filelist']
mainfilelist = GetGrpFLs(filenamelist, nchannel, group, ippath, oppath)
pprint.pprint(mainfilelist)

#%%
# export sliced csv
threshold = {
    '1': threshold_photon_c1,
    '2': threshold_photon_c2,
}

data_list = []
for c in range(nchannel):
    for g in group.keys():
        for i in range(len(mainfilelist[str(c+1)][g]['filename_ip'])):
        # for i in range(10):

# ========================================================

#%%
path = '/Volumes/LaCie_DataStorage/Asensio_Lab'
raw_dir = 'raw'
sub_dir = 'KO_2'
raw_path = os.path.join(path, raw_dir, sub_dir)
print(raw_path)

op_dir = 'output'
oppath = os.path.join(path, op_dir, sub_dir)

DirCheck(oppath)

#%%
filename, filepath = ListFiles(raw_path, '.tif')
print(filepath)

#%%
cleaned_filelist = SortByFolder(filepath, 'Tile_')
print([item.filename for item in cleaned_filelist])

#%%

# copy files to the new output folder
for item in cleaned_filelist:
    print(item.filename)
    copyfile(item.filepath, os.path.join(oppath, 'image_' + str(item.index).zfill(4) + '.tif'))
#%%
foldernames = ListFolders(ippath)

dirchecklist = []
for i in foldernames:
    dirchecklist.append(os.path.join(oppath, i))
DirCheck(dirchecklist)

#%% 
par_path = os.path.join(path, project_dir, 'par', 'tile_dimension.csv')
par_data= pd.read_csv(par_path)
display(par_data)

#%%
filelist, fileabslist = ListFiles(ippath, extension = '.mrc')
# print(filelist)
org_filename = par_data['cellname'] 

class imgfile:
    def __init__(self, filename, filepath, foldername, folderpath):
            self.filename = filename
            self.filepath = filepath
            self.foldername = foldername
            self.folderpath = folderpath

filelistprofile = []
for idx in range(len(fileabslist)):
    path_tmp = fileabslist[idx]
    filename_tmp = filelist[idx]
    folderpath_tmp = os.path.split(path_tmp)[0]
Esempio n. 9
0
# style.use('fivethirtyeight')

from core.fileop import DirCheck, ListFiles
from core.filamentanalysis import SegStats, BranchLabel

#%%
ippath = '/Volumes/LaCie_DataStorage/Woo-lungs/2019/data/normoxia/'
var = ['df_nodes', 'df_points', 'df_segments']
fl_names = ['lung_vs_002_nodes.csv', 'lung_vs_002_points.csv', 'lung_vs_002_segments.csv']

for idx in range(len(fl_names)):
    exec("%s = pd.read_csv(os.path.join(ippath, '%s'))"%(var[idx], fl_names[idx]))

#%%
# calculate length for each segments
filelist = ListFiles(ippath, extension='.csv')[0]
filelist = [filename + '.csv' for filename in filelist]
print(filelist)

#%%
opfilename = 'lung_vs_002_segments_s.csv'
if opfilename in filelist:
    df_segments_s = pd.read_csv(os.path.join(ippath, opfilename), header = 0)
else:
    df_segments_s = SegStats(df_points, df_segments)            
    df_segments_s.to_csv(os.path.join(ippath, opfilename), index = False)

#%%
display(df_segments_s)

#%%
Esempio n. 10
0
def AlignImagesStack_Affine(ippath, oppath, oppath_match = None, factor = 1, warp_mode = cv2.MOTION_HOMOGRAPHY, 
                            centerimg = None, startimg = None, endimg = None, ext = '.tif', GOOD_MATCH_PERCENT = 0.1):
    
    # configure parameters

    filename, filepath = ListFiles(ippath, ext)
    # print(filepath)

    if startimg is None:
        startimg_idx = 0   
    else:
        startimg_idx = startimg - 1
    
    print("The First Image of the Stack: Slice No.{}(idx {})".format(startimg, startimg_idx))

    if endimg is None: 
        endimg_idx = len(filename)
    else:
        endimg_idx = endimg - 1

    print("The Last Image of the Stack: Slice No.{}(idx {})".format(endimg, endimg_idx))

    if centerimg is None:
        center_idx = startimg_idx
    else: 
        center_idx = centerimg - 1
    
    print("Image registration starting from: Slice No.{}(idx {})".format(centerimg, center_idx))

    copyfile(filepath[center_idx], os.path.join(oppath, filename[center_idx] + ext))

    # center to the end
    for i in range(center_idx, endimg_idx):
        print(i)
        
        if filename[i] == filename[-1]:
            break
        
        im1_path = os.path.join(oppath, filename[i] + ext)
        im2_path = filepath[i+1]
        opfilename = filename[i+1]

        imip_1, imip_2, im2Reg, h, imMatches = AlignImages_Affine(im1_path, im2_path, factor = factor, GOOD_MATCH_PERCENT = GOOD_MATCH_PERCENT)

        im2Reg_pil = Image.fromarray(im2Reg)
        im2Reg_pil.save(os.path.join(oppath, opfilename + ext))
        
        if oppath_match is not None: 
            cv2.imwrite(os.path.join(oppath_match, opfilename + '.png'), imMatches)

    # ceter to the start
    for i in reversed(range(startimg_idx + 1, center_idx+1)):
        print(i)
        
        im1_path = os.path.join(oppath, filename[i] + ext)
        im2_path = filepath[i-1]
        opfilename = filename[i-1]

        imip_1, imip_2, im2Reg, h, imMatches = AlignImages_Affine(im1_path, im2_path, factor = factor, GOOD_MATCH_PERCENT = GOOD_MATCH_PERCENT)
    
        im2Reg_pil = Image.fromarray(im2Reg)
        im2Reg_pil.save(os.path.join(oppath, opfilename + ext))
        
        if oppath_match is not None: 
            cv2.imwrite(os.path.join(oppath_match, opfilename + '.png'), imMatches)
Esempio n. 11
0
 print(ippath_img_tmp)
 DirCheck(oppath_img_tmp)
 print(j)
 m = re.search('^img_(0*[1-9][0-9]*)$', j)
 if m:
     found = m.group(1)
     found = found.strip('0')
     print(found)
 filename_list = list(dimdata['filename'])
 idx = filename_list.index(found)
 print(idx)
 
 tile_dim = (dimdata['x'][idx], dimdata['y'][idx])
 box_dim = (3, 3)
 
 filelist, fileabslist = ListFiles(ippath_img_tmp, '.tif') 
 print(filelist)
 print(ippath_img_tmp)
 # tile_dim = (10, 8)
 print(tile_dim)
 for idx in range(len(filelist)):
     print(idx)
     IdxConverter(idx, tile_dim, box_dim)
     ip_filename = j + '_' + str(idx).zfill(4) + '.tif'
     op_filename = j + '_' + str(IdxConverter(idx, tile_dim, box_dim)).zfill(4) + '.tif'
     print(ip_filename)
     ip_path = os.path.join(ippath, i, j, ip_filename)
     print(op_filename)
     op_path = os.path.join(oppath, i, j, op_filename)
     # copyfile(ip_path, op_path)