def generate_ray(self, sample): """Generate a Ray from the camera.""" # Generate raster and camera samples p_ras = Point(sample.image_x, sample.image_y, 0) p_camera = self.raster_to_camera(p_ras) ray = Ray(Point(0, 0, 0), normalize(Vector.from_point(p_camera)), 0.0, float('inf')) # Modify ray for depth of field if self.lens_radius > 0.0: # Sample point on lens lens_u, lens_v = concentric_sample_disk(sample.lens_u, sample.lens_v) lens_u *= self.lens_radius lens_v *= self.lens_radius # Compute point on plane of focus ft = self.focal_distance / ray.d.z p_focus = ray(ft) # Update ray for effect of lens ray.o = Point(lens_u, lens_v, 0.0) ray.d = normalize(p_focus - ray.o) ray.time = sample.time ray = self.camera_to_world(ray) return 1.0, ray
def test_intersect(self): # test an intersection ray = Ray(Point(0, 0, 10), Vector(0, 0, -1)) intersection = Intersection() intersected = self.grid_accel.intersect(ray, intersection) self.assertFalse(intersected) ray.maxt = float('inf') intersected = self.grid_accel.intersect_p(ray) self.assertFalse(intersected) # test an intersection ray2 = Ray(Point(10, 0, 10), Vector(0, 0, -1)) intersection = Intersection() intersected = self.grid_accel.intersect(ray2, intersection) self.assertTrue(intersected) self.assertEqual(intersection.primitive_id, self.primitive_sphere1.primitive_id) self.assertEqual(intersection.shape_id, self.sphere1.shape_id) ray2.maxt = float('inf') intersected = self.grid_accel.intersect_p(ray2) self.assertTrue(intersected) # test an intersection ray3 = Ray(Point(-10, 0, 10), Vector(0, 0, -1)) intersection = Intersection() intersected = self.grid_accel.intersect(ray3, intersection) self.assertTrue(intersected) self.assertEqual(intersection.primitive_id, self.primitive_sphere2.primitive_id) self.assertEqual(intersection.shape_id, self.sphere2.shape_id) ray3.maxt = float('inf') intersected = self.grid_accel.intersect_p(ray3) self.assertTrue(intersected)
def pdf_wi(self, p, wi): """Intersect sample ray with area light geometry.""" dg_light = DifferentialGeometry() ray = Ray(p, wi, 1e-3) ray.depth = -1 # temp hack to ignore alpha mask intersect, t_hit, ray_epsilon, dg_light = self.intersect(ray) if not intersect: return 0.0 # convert light sample weight to solid angle measure pdf = distance_squared(p, ray(t_hit)) / \ (abs_dot(dg_light.nnm -wi) * self.area()) if pdf == float('inf'): return 0.0 return pdf
def test_bounding_box_9(self): bbox = BBox(Point(-1, -1, -1), Point(1, 1, 1)) ray1 = Ray(Point(10, 10, 10), Vector(-1, -1, -1)) intersect, hit0, hit1 = bbox.intersect_p(ray1) self.assertTrue(intersect) ray2 = Ray(Point(10, 10, 10), Vector(-1, 1, -1)) intersect, hit0, hit1 = bbox.intersect_p(ray2) self.assertFalse(intersect) ray3 = Ray(Point(0, 0, 10), Vector(0, 0, -1)) intersect, hit0, hit1 = bbox.intersect_p(ray3) self.assertTrue(intersect) self.assertEqual(hit0, 9.0) self.assertEqual(hit1, 11.0)
def sample_p(self, p, u1, u2): """Sample at point p.""" # Compute coordinate system for sphere sampling p_center = self.object_to_world(Point(0, 0, 0)) wc = normalize(p_center - p) wc_x, wc_y = coordinate_system(wc) # Sample uniformly on sphere if $\pt{}$ is inside it if (distance_squared(p, p_center) - self.radius * self.radius) < 1e-4: return self.sample(u1, u2) # Sample sphere uniformly inside subtended cone sin_theta_max2 = self.radius * self.radius / distance_squared( p, p_center) cos_theta_max = math.sqrt(max(0.0, 1.0 - sin_theta_max2)) raise Exception("next_line") # r = Ray(p, uniform_sample_cone(u1, u2, cos_theta_max, wcX, wcY, wc), 1e-3) r = Ray(p) intersect, t_hit, ray_epsilon, dg_sphere = self.intersect(r) if not intersect: t_hit = dot(p_center - p, normalize(r.d)) ps = r(t_hit) ns = Normal(normalize(ps - p_center)) if (self.reverse_orientation): ns *= -1.0 return ps, ns
def test_ray(self): r = Ray(Point(0, 0, 0), Vector(1, 2, 3)) # test copy constructor r2 = Ray.from_ray(r) self.assertTrue(isinstance(r2, Ray)) self.assertEqual(r2.d, r.d) # test constructor from parent ray r3 = Ray.from_ray_parent(r.o, r.d, r, r.mint) self.assertTrue(isinstance(r3, Ray)) self.assertEqual(r3.depth, r.depth+1) # test operator() p = r(1.7) self.assertEqual(p, Point(1.7, 3.4, 5.1))
def test_ray_differential(self): r = Ray(Point(0, 0, 0), Vector(1, 2, 3)) rd = RayDifferential(Point(0, 0, 0), Vector(1, 2, 3)) # test copy constructor from Ray rd.has_differentials = True rd1 = RayDifferential.from_ray_differential(rd) self.assertTrue(isinstance(rd1, RayDifferential)) self.assertEqual(rd1.o, rd.o) self.assertEqual(rd1.d, rd.d) self.assertEqual(rd1.rx_origin, rd.rx_origin) self.assertEqual(rd1.ry_origin, rd.ry_origin) self.assertEqual(rd1.rx_direction, rd.rx_direction) self.assertEqual(rd1.ry_direction, rd.ry_direction) self.assertEqual(rd1.has_differentials, rd.has_differentials) # test copy constructor from Ray rd2 = RayDifferential.from_ray(r) self.assertTrue(isinstance(rd2, RayDifferential)) self.assertEqual(rd2.d, r.d) self.assertEqual(rd2.has_differentials, False) # test constructor from parent ray rd3 = RayDifferential.from_ray_parent(r.o, r.d, r, r.mint) self.assertTrue(isinstance(rd3, RayDifferential)) self.assertEqual(rd3.depth, r.depth + 1) # test operator() p = rd(1.7) self.assertEqual(p, Point(1.7, 3.4, 5.1))
def test_ray(self): r = Ray(Point(0, 0, 0), Vector(1, 2, 3)) # test copy constructor r2 = Ray.from_ray(r) self.assertTrue(isinstance(r2, Ray)) self.assertEqual(r2.d, r.d) # test constructor from parent ray r3 = Ray.from_ray_parent(r.o, r.d, r, r.mint) self.assertTrue(isinstance(r3, Ray)) self.assertEqual(r3.depth, r.depth + 1) # test operator() p = r(1.7) self.assertEqual(p, Point(1.7, 3.4, 5.1))
def test_transform_ray(self): ray = Ray(origin=Point(1, 2, 3), direction=Vector(10, 20, 30)) ray_transformed = translate(Point(10, 20, 30))(ray) self.assertTrue(isinstance(ray_transformed, Ray)) self.assertEqual(ray_transformed.o, Point(11, 22, 33)) self.assertEqual(ray_transformed.d, Vector(10, 20, 30))
def test_intersect(self): # test an intersection ray = Ray(Point(20, 10, 10), Vector(-1, -1, -1)) intersect, t_hit, ray_epsilon, dg = self.sphere.intersect(ray) self.assertTrue(intersect) intersect = self.sphere.intersect_p(ray) self.assertTrue(intersect) # test an intersection ray = Ray(Point(20, 10, 10), Vector(-1, 1, -1)) intersect, t_hit, ray_epsilon, dg = self.sphere.intersect(ray) self.assertFalse(intersect) intersect = self.sphere.intersect_p(ray) self.assertFalse(intersect) # test an intersection ray = Ray(Point(10, 0, 0), Vector(3, 1, -2)) intersect, t_hit, ray_epsilon, dg = self.sphere.intersect(ray) self.assertTrue(intersect) intersect = self.sphere.intersect_p(ray) self.assertTrue(intersect)
def time_sphere_intersection(): # create a transform o2w = translate(Vector(10,0,0)) * scale(1.3, 1.8, 2.0) w2o = o2w.inverse() # create the sphere sphere = Sphere(o2w, w2o, False, 1.0, -1.0, 1.0, 360) # create a large amount of rays, # choose so that half of them will intersect the ray positions = [Point(random.randint(0,100), random.randint(0,100), random.randint(0,100) ) for i in range(size)] ray = Ray(Point(0,0,0), Vector(1.0, 1.0, 1.0)) vectors = [] for i in xrange(size): position = positions[i] if i%2 == 0: # make sure this ray hit the sphere vector = sphere.object_to_world(Point(0, 0, 0)) - position vector /= float(random.randint(1,10)) else: # construct a random vector vector = Vector((random.random()-0.5)*random.randint(1,5), (random.random()-0.5)*random.randint(1,5), (random.random()-0.5*random.randint(1,5))) vectors.append(vector) intersections = 0 t1 = time.time() for i in xrange(nb_calls): ray.o = positions[i%size] ray.d = vectors[i%size] if sphere.intersect_p(ray): intersections += 1 t2 = time.time() for i in xrange(nb_calls): ray.o = positions[i%size] ray.d = vectors[i%size] sphere.intersect(ray) t3 = time.time() print "%d calls, %d intersections" % (nb_calls, intersections) print "Sphere.intersect_p() %.2fms" % ((t2-t1)/float(nb_calls)*1000.0) print "Sphere.intersect() %.2fms" % ((t3-t2)/float(nb_calls)*1000.0)
def __call__(self, elt): """Overload the operator(). Supported operations: * Transform(Point) * Transform(Vector) * Transform(Normal) * Transform(Ray) * Transform(RayDifferential) * Transform(BBox) """ if isinstance(elt, Point): x = elt.x y = elt.y z = elt.z xp = self.m.m[0][0] * x + self.m.m[0][1] * y + self.m.m[0][ 2] * z + self.m.m[0][3] yp = self.m.m[1][0] * x + self.m.m[1][1] * y + self.m.m[1][ 2] * z + self.m.m[1][3] zp = self.m.m[2][0] * x + self.m.m[2][1] * y + self.m.m[2][ 2] * z + self.m.m[2][3] wp = self.m.m[3][0] * x + self.m.m[3][1] * y + self.m.m[3][ 2] * z + self.m.m[3][3] if wp == 1.0: return Point(xp, yp, zp) else: return Point(xp, yp, zp) / wp elif isinstance(elt, Vector): x = elt.x y = elt.y z = elt.z xp = self.m.m[0][0] * x + self.m.m[0][1] * y + self.m.m[0][2] * z yp = self.m.m[1][0] * x + self.m.m[1][1] * y + self.m.m[1][2] * z zp = self.m.m[2][0] * x + self.m.m[2][1] * y + self.m.m[2][2] * z return Vector(xp, yp, zp) elif isinstance(elt, Normal): x = elt.x y = elt.y z = elt.z return Normal( self.m_inv.m[0][0] * x + self.m_inv.m[1][0] * y + self.m_inv.m[2][0] * z, self.m_inv.m[0][1] * x + self.m_inv.m[1][1] * y + self.m_inv.m[2][1] * z, self.m_inv.m[0][2] * x + self.m_inv.m[1][2] * y + self.m_inv.m[2][2] * z) elif isinstance(elt, RayDifferential): ray = RayDifferential.from_ray_differential(elt) ray.o = self(ray.o) ray.d = self(ray.d) ray.rx_origin = self(ray.rx_origin) ray.ry_origin = self(ray.ry_origin) ray.rx_direction = self(ray.rx_direction) ray.ry_direction = self(ray.ry_direction) return ray elif isinstance(elt, Ray): ray = Ray.from_ray(elt) ray.o = self(ray.o) ray.d = self(ray.d) return ray elif isinstance(elt, BBox): ret = BBox(self(Point(elt.p_min.x, elt.p_min.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_min.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_min.x, elt.p_max.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_min.x, elt.p_min.y, elt.p_max.z))) ret = union(ret, self(Point(elt.p_min.x, elt.p_max.y, elt.p_max.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_max.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_min.y, elt.p_max.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_max.y, elt.p_max.z))) return ret
def __call__(self, elt): """Overload the operator(). Supported operations: * Transform(Point) * Transform(Vector) * Transform(Normal) * Transform(Ray) * Transform(RayDifferential) * Transform(BBox) """ if isinstance(elt, Point): x = elt.x y = elt.y z = elt.z xp = self.m.m[0][0]*x + self.m.m[0][1]*y + self.m.m[0][2]*z + self.m.m[0][3] yp = self.m.m[1][0]*x + self.m.m[1][1]*y + self.m.m[1][2]*z + self.m.m[1][3] zp = self.m.m[2][0]*x + self.m.m[2][1]*y + self.m.m[2][2]*z + self.m.m[2][3] wp = self.m.m[3][0]*x + self.m.m[3][1]*y + self.m.m[3][2]*z + self.m.m[3][3] if wp == 1.0: return Point(xp, yp, zp) else: return Point(xp, yp, zp)/wp elif isinstance(elt, Vector): x = elt.x y = elt.y z = elt.z xp = self.m.m[0][0]*x + self.m.m[0][1]*y + self.m.m[0][2]*z yp = self.m.m[1][0]*x + self.m.m[1][1]*y + self.m.m[1][2]*z zp = self.m.m[2][0]*x + self.m.m[2][1]*y + self.m.m[2][2]*z return Vector(xp, yp, zp) elif isinstance(elt, Normal): x = elt.x y = elt.y z = elt.z return Normal(self.m_inv.m[0][0]*x + self.m_inv.m[1][0]*y + self.m_inv.m[2][0]*z, self.m_inv.m[0][1]*x + self.m_inv.m[1][1]*y + self.m_inv.m[2][1]*z, self.m_inv.m[0][2]*x + self.m_inv.m[1][2]*y + self.m_inv.m[2][2]*z) elif isinstance(elt, RayDifferential): ray = RayDifferential.from_ray_differential(elt) ray.o = self(ray.o) ray.d = self(ray.d) ray.rx_origin = self(ray.rx_origin) ray.ry_origin = self(ray.ry_origin) ray.rx_direction = self(ray.rx_direction) ray.ry_direction = self(ray.ry_direction) return ray elif isinstance(elt, Ray): ray = Ray.from_ray(elt) ray.o = self(ray.o) ray.d = self(ray.d) return ray elif isinstance(elt, BBox): ret = BBox(self(Point(elt.p_min.x, elt.p_min.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_min.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_min.x, elt.p_max.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_min.x, elt.p_min.y, elt.p_max.z))) ret = union(ret, self(Point(elt.p_min.x, elt.p_max.y, elt.p_max.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_max.y, elt.p_min.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_min.y, elt.p_max.z))) ret = union(ret, self(Point(elt.p_max.x, elt.p_max.y, elt.p_max.z))) return ret