Esempio n. 1
0
def MergeMaskedFace(predictor_func, predictor_input_shape, face_enhancer_func,
                    xseg_256_extract_func, cfg, frame_info, img_bgr_uint8,
                    img_bgr, img_face_landmarks):

    img_size = img_bgr.shape[1], img_bgr.shape[0]
    img_face_mask_a = LandmarksProcessor.get_image_hull_mask(
        img_bgr.shape, img_face_landmarks)

    input_size = predictor_input_shape[0]
    mask_subres_size = input_size * 4
    output_size = input_size
    if cfg.super_resolution_power != 0:
        output_size *= 4

    face_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks,
                                                    output_size,
                                                    face_type=cfg.face_type)
    face_output_mat = LandmarksProcessor.get_transform_mat(
        img_face_landmarks,
        output_size,
        face_type=cfg.face_type,
        scale=1.0 + 0.01 * cfg.output_face_scale)

    if mask_subres_size == output_size:
        face_mask_output_mat = face_output_mat
    else:
        face_mask_output_mat = LandmarksProcessor.get_transform_mat(
            img_face_landmarks,
            mask_subres_size,
            face_type=cfg.face_type,
            scale=1.0 + 0.01 * cfg.output_face_scale)

    dst_face_bgr = cv2.warpAffine(img_bgr,
                                  face_mat, (output_size, output_size),
                                  flags=cv2.INTER_CUBIC)
    dst_face_bgr = np.clip(dst_face_bgr, 0, 1)

    dst_face_mask_a_0 = cv2.warpAffine(img_face_mask_a,
                                       face_mat, (output_size, output_size),
                                       flags=cv2.INTER_CUBIC)
    dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)

    predictor_input_bgr = cv2.resize(dst_face_bgr, (input_size, input_size))

    predicted = predictor_func(predictor_input_bgr)
    prd_face_bgr = np.clip(predicted[0], 0, 1.0)
    prd_face_mask_a_0 = np.clip(predicted[1], 0, 1.0)
    prd_face_dst_mask_a_0 = np.clip(predicted[2], 0, 1.0)

    if cfg.super_resolution_power != 0:
        prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr,
                                                   is_tanh=True,
                                                   preserve_size=False)
        mod = cfg.super_resolution_power / 100.0
        prd_face_bgr = cv2.resize(prd_face_bgr, (output_size, output_size)) * (
            1.0 - mod) + prd_face_bgr_enhanced * mod
        prd_face_bgr = np.clip(prd_face_bgr, 0, 1)

    if cfg.super_resolution_power != 0:
        prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                       (output_size, output_size),
                                       interpolation=cv2.INTER_CUBIC)
        prd_face_dst_mask_a_0 = cv2.resize(prd_face_dst_mask_a_0,
                                           (output_size, output_size),
                                           interpolation=cv2.INTER_CUBIC)

    if cfg.mask_mode == 1:  #dst
        wrk_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       (output_size, output_size),
                                       interpolation=cv2.INTER_CUBIC)
    elif cfg.mask_mode == 2:  #learned-prd
        wrk_face_mask_a_0 = prd_face_mask_a_0
    elif cfg.mask_mode == 3:  #learned-dst
        wrk_face_mask_a_0 = prd_face_dst_mask_a_0
    elif cfg.mask_mode == 4:  #learned-prd*learned-dst
        wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0
    elif cfg.mask_mode == 5:  #learned-prd+learned-dst
        wrk_face_mask_a_0 = np.clip(prd_face_mask_a_0 + prd_face_dst_mask_a_0,
                                    0, 1)
    elif cfg.mask_mode >= 6 and cfg.mask_mode <= 9:  #XSeg modes
        if cfg.mask_mode == 6 or cfg.mask_mode == 8 or cfg.mask_mode == 9:
            # obtain XSeg-prd
            prd_face_xseg_bgr = cv2.resize(prd_face_bgr,
                                           (xseg_input_size, ) * 2,
                                           interpolation=cv2.INTER_CUBIC)
            prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
            X_prd_face_mask_a_0 = cv2.resize(prd_face_xseg_mask,
                                             (output_size, output_size),
                                             interpolation=cv2.INTER_CUBIC)

        if cfg.mask_mode >= 7 and cfg.mask_mode <= 9:
            # obtain XSeg-dst
            xseg_mat = LandmarksProcessor.get_transform_mat(
                img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
            dst_face_xseg_bgr = cv2.warpAffine(img_bgr,
                                               xseg_mat,
                                               (xseg_input_size, ) * 2,
                                               flags=cv2.INTER_CUBIC)
            dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
            X_dst_face_mask_a_0 = cv2.resize(dst_face_xseg_mask,
                                             (output_size, output_size),
                                             interpolation=cv2.INTER_CUBIC)

        if cfg.mask_mode == 6:  #'XSeg-prd'
            wrk_face_mask_a_0 = X_prd_face_mask_a_0
        elif cfg.mask_mode == 7:  #'XSeg-dst'
            wrk_face_mask_a_0 = X_dst_face_mask_a_0
        elif cfg.mask_mode == 8:  #'XSeg-prd*XSeg-dst'
            wrk_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
        elif cfg.mask_mode == 9:  #learned-prd*learned-dst*XSeg-prd*XSeg-dst
            wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0

    wrk_face_mask_a_0[wrk_face_mask_a_0 < (1.0 /
                                           255.0)] = 0.0  # get rid of noise

    # resize to mask_subres_size
    if wrk_face_mask_a_0.shape[0] != mask_subres_size:
        wrk_face_mask_a_0 = cv2.resize(wrk_face_mask_a_0,
                                       (mask_subres_size, mask_subres_size),
                                       interpolation=cv2.INTER_CUBIC)

    # process mask in local predicted space
    if 'raw' not in cfg.mode:
        # add zero pad
        wrk_face_mask_a_0 = np.pad(wrk_face_mask_a_0, input_size)

        ero = cfg.erode_mask_modifier
        blur = cfg.blur_mask_modifier

        if ero > 0:
            wrk_face_mask_a_0 = cv2.erode(wrk_face_mask_a_0,
                                          cv2.getStructuringElement(
                                              cv2.MORPH_ELLIPSE, (ero, ero)),
                                          iterations=1)
        elif ero < 0:
            wrk_face_mask_a_0 = cv2.dilate(wrk_face_mask_a_0,
                                           cv2.getStructuringElement(
                                               cv2.MORPH_ELLIPSE,
                                               (-ero, -ero)),
                                           iterations=1)

        # clip eroded/dilated mask in actual predict area
        # pad with half blur size in order to accuratelly fade to zero at the boundary
        clip_size = input_size + blur // 2

        wrk_face_mask_a_0[:clip_size, :] = 0
        wrk_face_mask_a_0[-clip_size:, :] = 0
        wrk_face_mask_a_0[:, :clip_size] = 0
        wrk_face_mask_a_0[:, -clip_size:] = 0

        if blur > 0:
            blur = blur + (1 - blur % 2)
            wrk_face_mask_a_0 = cv2.GaussianBlur(wrk_face_mask_a_0,
                                                 (blur, blur), 0)

        wrk_face_mask_a_0 = wrk_face_mask_a_0[input_size:-input_size,
                                              input_size:-input_size]

        wrk_face_mask_a_0 = np.clip(wrk_face_mask_a_0, 0, 1)

    img_face_mask_a = cv2.warpAffine(wrk_face_mask_a_0,
                                     face_mask_output_mat,
                                     img_size,
                                     np.zeros(img_bgr.shape[0:2],
                                              dtype=np.float32),
                                     flags=cv2.WARP_INVERSE_MAP
                                     | cv2.INTER_CUBIC)[..., None]
    img_face_mask_a = np.clip(img_face_mask_a, 0.0, 1.0)
    img_face_mask_a[img_face_mask_a < (1.0 / 255.0)] = 0.0  # get rid of noise

    if wrk_face_mask_a_0.shape[0] != output_size:
        wrk_face_mask_a_0 = cv2.resize(wrk_face_mask_a_0,
                                       (output_size, output_size),
                                       interpolation=cv2.INTER_CUBIC)

    wrk_face_mask_a = wrk_face_mask_a_0[..., None]

    out_img = None
    out_merging_mask_a = None
    if cfg.mode == 'original':
        return img_bgr, img_face_mask_a

    elif 'raw' in cfg.mode:
        if cfg.mode == 'raw-rgb':
            out_img_face = cv2.warpAffine(
                prd_face_bgr, face_output_mat, img_size,
                np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
            out_img_face_mask = cv2.warpAffine(
                np.ones_like(prd_face_bgr), face_output_mat, img_size,
                np.empty_like(img_bgr), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
            out_img = img_bgr * (
                1 - out_img_face_mask) + out_img_face * out_img_face_mask
            out_merging_mask_a = img_face_mask_a
        elif cfg.mode == 'raw-predict':
            out_img = prd_face_bgr
            out_merging_mask_a = wrk_face_mask_a
        else:
            raise ValueError(f"undefined raw type {cfg.mode}")

        out_img = np.clip(out_img, 0.0, 1.0)
    else:

        # Process if the mask meets minimum size
        maxregion = np.argwhere(img_face_mask_a >= 0.1)
        if maxregion.size != 0:
            miny, minx = maxregion.min(axis=0)[:2]
            maxy, maxx = maxregion.max(axis=0)[:2]
            lenx = maxx - minx
            leny = maxy - miny
            if min(lenx, leny) >= 4:
                wrk_face_mask_area_a = wrk_face_mask_a.copy()
                wrk_face_mask_area_a[wrk_face_mask_area_a > 0] = 1.0

                if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
                    if cfg.color_transfer_mode == 1:  #rct
                        prd_face_bgr = imagelib.reinhard_color_transfer(
                            np.clip(prd_face_bgr * wrk_face_mask_area_a * 255,
                                    0, 255).astype(np.uint8),
                            np.clip(dst_face_bgr * wrk_face_mask_area_a * 255,
                                    0, 255).astype(np.uint8),
                        )

                        prd_face_bgr = np.clip(
                            prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                    elif cfg.color_transfer_mode == 2:  #lct
                        prd_face_bgr = imagelib.linear_color_transfer(
                            prd_face_bgr, dst_face_bgr)
                    elif cfg.color_transfer_mode == 3:  #mkl
                        prd_face_bgr = imagelib.color_transfer_mkl(
                            prd_face_bgr, dst_face_bgr)
                    elif cfg.color_transfer_mode == 4:  #mkl-m
                        prd_face_bgr = imagelib.color_transfer_mkl(
                            prd_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a)
                    elif cfg.color_transfer_mode == 5:  #idt
                        prd_face_bgr = imagelib.color_transfer_idt(
                            prd_face_bgr, dst_face_bgr)
                    elif cfg.color_transfer_mode == 6:  #idt-m
                        prd_face_bgr = imagelib.color_transfer_idt(
                            prd_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a)
                    elif cfg.color_transfer_mode == 7:  #sot-m
                        prd_face_bgr = imagelib.color_transfer_sot(
                            prd_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a,
                            steps=10,
                            batch_size=30)
                        prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                    elif cfg.color_transfer_mode == 8:  #mix-m
                        prd_face_bgr = imagelib.color_transfer_mix(
                            prd_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a)

                if cfg.mode == 'hist-match':
                    hist_mask_a = np.ones(prd_face_bgr.shape[:2] + (1, ),
                                          dtype=np.float32)

                    if cfg.masked_hist_match:
                        hist_mask_a *= wrk_face_mask_area_a

                    white = (1.0 - hist_mask_a) * np.ones(
                        prd_face_bgr.shape[:2] + (1, ), dtype=np.float32)

                    hist_match_1 = prd_face_bgr * hist_mask_a + white
                    hist_match_1[hist_match_1 > 1.0] = 1.0

                    hist_match_2 = dst_face_bgr * hist_mask_a + white
                    hist_match_2[hist_match_1 > 1.0] = 1.0

                    prd_face_bgr = imagelib.color_hist_match(
                        hist_match_1, hist_match_2,
                        cfg.hist_match_threshold).astype(dtype=np.float32)

                if 'seamless' in cfg.mode:
                    #mask used for cv2.seamlessClone
                    img_face_seamless_mask_a = None
                    for i in range(1, 10):
                        a = img_face_mask_a > i / 10.0
                        if len(np.argwhere(a)) == 0:
                            continue
                        img_face_seamless_mask_a = img_face_mask_a.copy()
                        img_face_seamless_mask_a[a] = 1.0
                        img_face_seamless_mask_a[
                            img_face_seamless_mask_a <= i / 10.0] = 0.0
                        break

                out_img = cv2.warpAffine(
                    prd_face_bgr, face_output_mat, img_size,
                    np.empty_like(img_bgr),
                    cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
                out_img = np.clip(out_img, 0.0, 1.0)

                if 'seamless' in cfg.mode:
                    try:
                        #calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
                        l, t, w, h = cv2.boundingRect(
                            (img_face_seamless_mask_a * 255).astype(np.uint8))
                        s_maskx, s_masky = int(l + w / 2), int(t + h / 2)
                        out_img = cv2.seamlessClone(
                            (out_img * 255).astype(np.uint8), img_bgr_uint8,
                            (img_face_seamless_mask_a * 255).astype(np.uint8),
                            (s_maskx, s_masky), cv2.NORMAL_CLONE)
                        out_img = out_img.astype(dtype=np.float32) / 255.0
                    except Exception as e:
                        #seamlessClone may fail in some cases
                        e_str = traceback.format_exc()

                        if 'MemoryError' in e_str:
                            raise Exception(
                                "Seamless fail: " + e_str
                            )  #reraise MemoryError in order to reprocess this data by other processes
                        else:
                            print("Seamless fail: " + e_str)

                cfg_mp = cfg.motion_blur_power / 100.0

                out_img = img_bgr * (1 - img_face_mask_a) + (out_img *
                                                             img_face_mask_a)

                if ('seamless' in cfg.mode and cfg.color_transfer_mode != 0) or \
                   cfg.mode == 'seamless-hist-match' or \
                   cfg_mp != 0 or \
                   cfg.blursharpen_amount != 0 or \
                   cfg.image_denoise_power != 0 or \
                   cfg.bicubic_degrade_power != 0:

                    out_face_bgr = cv2.warpAffine(out_img,
                                                  face_mat,
                                                  (output_size, output_size),
                                                  flags=cv2.INTER_CUBIC)

                    if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
                        if cfg.color_transfer_mode == 1:
                            out_face_bgr = imagelib.reinhard_color_transfer(
                                np.clip(
                                    out_face_bgr * wrk_face_mask_area_a * 255,
                                    0, 255).astype(np.uint8),
                                np.clip(
                                    dst_face_bgr * wrk_face_mask_area_a * 255,
                                    0, 255).astype(np.uint8))
                            out_face_bgr = np.clip(
                                out_face_bgr.astype(np.float32) / 255.0, 0.0,
                                1.0)
                        elif cfg.color_transfer_mode == 2:  #lct
                            out_face_bgr = imagelib.linear_color_transfer(
                                out_face_bgr, dst_face_bgr)
                        elif cfg.color_transfer_mode == 3:  #mkl
                            out_face_bgr = imagelib.color_transfer_mkl(
                                out_face_bgr, dst_face_bgr)
                        elif cfg.color_transfer_mode == 4:  #mkl-m
                            out_face_bgr = imagelib.color_transfer_mkl(
                                out_face_bgr * wrk_face_mask_area_a,
                                dst_face_bgr * wrk_face_mask_area_a)
                        elif cfg.color_transfer_mode == 5:  #idt
                            out_face_bgr = imagelib.color_transfer_idt(
                                out_face_bgr, dst_face_bgr)
                        elif cfg.color_transfer_mode == 6:  #idt-m
                            out_face_bgr = imagelib.color_transfer_idt(
                                out_face_bgr * wrk_face_mask_area_a,
                                dst_face_bgr * wrk_face_mask_area_a)
                        elif cfg.color_transfer_mode == 7:  #sot-m
                            out_face_bgr = imagelib.color_transfer_sot(
                                out_face_bgr * wrk_face_mask_area_a,
                                dst_face_bgr * wrk_face_mask_area_a,
                                steps=10,
                                batch_size=30)
                            out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                        elif cfg.color_transfer_mode == 8:  #mix-m
                            out_face_bgr = imagelib.color_transfer_mix(
                                out_face_bgr * wrk_face_mask_area_a,
                                dst_face_bgr * wrk_face_mask_area_a)

                    if cfg.mode == 'seamless-hist-match':
                        out_face_bgr = imagelib.color_hist_match(
                            out_face_bgr, dst_face_bgr,
                            cfg.hist_match_threshold)

                    if cfg_mp != 0:
                        k_size = int(frame_info.motion_power * cfg_mp)
                        if k_size >= 1:
                            k_size = np.clip(k_size + 1, 2, 50)
                            if cfg.super_resolution_power != 0:
                                k_size *= 2
                            out_face_bgr = imagelib.LinearMotionBlur(
                                out_face_bgr, k_size, frame_info.motion_deg)

                    if cfg.blursharpen_amount != 0:
                        out_face_bgr = imagelib.blursharpen(
                            out_face_bgr, cfg.sharpen_mode, 3,
                            cfg.blursharpen_amount)

                    if cfg.image_denoise_power != 0:
                        n = cfg.image_denoise_power
                        while n > 0:
                            img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
                            if int(n / 100) != 0:
                                img_bgr = img_bgr_denoised
                            else:
                                pass_power = (n % 100) / 100.0
                                img_bgr = img_bgr * (
                                    1.0 -
                                    pass_power) + img_bgr_denoised * pass_power
                            n = max(n - 10, 0)

                    if cfg.bicubic_degrade_power != 0:
                        p = 1.0 - cfg.bicubic_degrade_power / 101.0
                        img_bgr_downscaled = cv2.resize(
                            img_bgr,
                            (int(img_size[0] * p), int(img_size[1] * p)),
                            interpolation=cv2.INTER_CUBIC)
                        img_bgr = cv2.resize(img_bgr_downscaled,
                                             img_size,
                                             interpolation=cv2.INTER_CUBIC)

                    new_out = cv2.warpAffine(
                        out_face_bgr, face_mat, img_size,
                        np.empty_like(img_bgr),
                        cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)

                    out_img = np.clip(
                        img_bgr * (1 - img_face_mask_a) +
                        (new_out * img_face_mask_a), 0, 1.0)

                if cfg.color_degrade_power != 0:
                    out_img_reduced = imagelib.reduce_colors(out_img, 256)
                    if cfg.color_degrade_power == 100:
                        out_img = out_img_reduced
                    else:
                        alpha = cfg.color_degrade_power / 100.0
                        out_img = (out_img * (1.0 - alpha) +
                                   out_img_reduced * alpha)
        out_merging_mask_a = img_face_mask_a

    if out_img is None:
        out_img = img_bgr.copy()

    return out_img, out_merging_mask_a
Esempio n. 2
0
    def process(samples,
                sample_process_options,
                output_sample_types,
                debug,
                ct_sample=None):
        SPST = SampleProcessor.SampleType
        SPCT = SampleProcessor.ChannelType
        SPFMT = SampleProcessor.FaceMaskType

        sample_rnd_seed = np.random.randint(0x80000000)

        outputs = []
        for sample in samples:
            sample_bgr = sample.load_bgr()
            ct_sample_bgr = None
            h, w, c = sample_bgr.shape

            is_face_sample = sample.landmarks is not None

            if debug and is_face_sample:
                LandmarksProcessor.draw_landmarks(sample_bgr, sample.landmarks,
                                                  (0, 1, 0))

            params = imagelib.gen_warp_params(
                sample_bgr,
                sample_process_options.random_flip,
                rotation_range=sample_process_options.rotation_range,
                scale_range=sample_process_options.scale_range,
                tx_range=sample_process_options.tx_range,
                ty_range=sample_process_options.ty_range)

            outputs_sample = []
            for opts in output_sample_types:
                sample_type = opts.get('sample_type', SPST.NONE)
                channel_type = opts.get('channel_type', SPCT.NONE)
                resolution = opts.get('resolution', 0)
                warp = opts.get('warp', False)
                transform = opts.get('transform', False)
                motion_blur = opts.get('motion_blur', None)
                gaussian_blur = opts.get('gaussian_blur', None)
                normalize_tanh = opts.get('normalize_tanh', False)
                ct_mode = opts.get('ct_mode', 'None')
                data_format = opts.get('data_format', 'NHWC')

                if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
                    if not is_face_sample:
                        raise ValueError(
                            "face_samples should be provided for sample_type FACE_*"
                        )

                if is_face_sample:
                    face_type = opts.get('face_type', None)
                    face_mask_type = opts.get('face_mask_type', SPFMT.NONE)

                    if face_type is None:
                        raise ValueError(
                            "face_type must be defined for face samples")

                    if face_type > sample.face_type:
                        raise Exception(
                            'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.'
                            % (sample.filename, sample.face_type, target_ft))

                if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:

                    if sample_type == SPST.FACE_MASK:
                        if face_mask_type == SPFMT.ALL_HULL or \
                           face_mask_type == SPFMT.EYES_HULL or \
                           face_mask_type == SPFMT.ALL_EYES_HULL:
                            if face_mask_type == SPFMT.ALL_HULL or \
                               face_mask_type == SPFMT.ALL_EYES_HULL:
                                if sample.eyebrows_expand_mod is not None:
                                    all_mask = LandmarksProcessor.get_image_hull_mask(
                                        sample_bgr.shape,
                                        sample.landmarks,
                                        eyebrows_expand_mod=sample.
                                        eyebrows_expand_mod)
                                else:
                                    all_mask = LandmarksProcessor.get_image_hull_mask(
                                        sample_bgr.shape, sample.landmarks)

                                all_mask = np.clip(all_mask, 0, 1)

                            if face_mask_type == SPFMT.EYES_HULL or \
                               face_mask_type == SPFMT.ALL_EYES_HULL:
                                eyes_mask = LandmarksProcessor.get_image_eye_mask(
                                    sample_bgr.shape, sample.landmarks)
                                eyes_mask = np.clip(eyes_mask, 0, 1)

                            if face_mask_type == SPFMT.ALL_HULL:
                                img = all_mask
                            elif face_mask_type == SPFMT.EYES_HULL:
                                img = eyes_mask
                            elif face_mask_type == SPFMT.ALL_EYES_HULL:
                                img = all_mask + eyes_mask
                        elif face_mask_type == SPFMT.STRUCT:
                            if sample.eyebrows_expand_mod is not None:
                                img = LandmarksProcessor.get_face_struct_mask(
                                    sample_bgr.shape,
                                    sample.landmarks,
                                    eyebrows_expand_mod=sample.
                                    eyebrows_expand_mod)
                            else:
                                img = LandmarksProcessor.get_face_struct_mask(
                                    sample_bgr.shape, sample.landmarks)

                        if sample.ie_polys is not None:
                            sample.ie_polys.overlay_mask(img)

                        if sample.face_type == FaceType.MARK_ONLY:
                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, sample.shape[0], face_type)
                            img = cv2.warpAffine(
                                img,
                                mat, (sample.shape[0], sample.shape[0]),
                                flags=cv2.INTER_LINEAR)
                            img = imagelib.warp_by_params(
                                params,
                                img,
                                warp,
                                transform,
                                can_flip=True,
                                border_replicate=False,
                                cv2_inter=cv2.INTER_LINEAR)
                            img = cv2.resize(img, (resolution, resolution),
                                             cv2.INTER_LINEAR)[..., None]
                        else:
                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, resolution, face_type)
                            img = imagelib.warp_by_params(
                                params,
                                img,
                                warp,
                                transform,
                                can_flip=True,
                                border_replicate=False,
                                cv2_inter=cv2.INTER_LINEAR)
                            img = cv2.warpAffine(
                                img,
                                mat, (resolution, resolution),
                                borderMode=cv2.BORDER_CONSTANT,
                                flags=cv2.INTER_LINEAR)[..., None]

                        if channel_type == SPCT.G:
                            out_sample = img.astype(np.float32)
                        else:
                            raise ValueError(
                                "only channel_type.G supported for the mask")

                    elif sample_type == SPST.FACE_IMAGE:
                        img = sample_bgr
                        if motion_blur is not None:
                            chance, mb_max_size = motion_blur
                            chance = np.clip(chance, 0, 100)

                            l_rnd_state = np.random.RandomState(
                                sample_rnd_seed)
                            mblur_rnd_chance = l_rnd_state.randint(100)
                            mblur_rnd_kernel = l_rnd_state.randint(
                                mb_max_size) + 1
                            mblur_rnd_deg = l_rnd_state.randint(360)

                            if mblur_rnd_chance < chance:
                                img = imagelib.LinearMotionBlur(
                                    img, mblur_rnd_kernel, mblur_rnd_deg)

                        if gaussian_blur is not None:
                            chance, kernel_max_size = gaussian_blur
                            chance = np.clip(chance, 0, 100)

                            l_rnd_state = np.random.RandomState(
                                sample_rnd_seed + 1)
                            gblur_rnd_chance = l_rnd_state.randint(100)
                            gblur_rnd_kernel = l_rnd_state.randint(
                                kernel_max_size) * 2 + 1

                            if gblur_rnd_chance < chance:
                                img = cv2.GaussianBlur(
                                    img, (gblur_rnd_kernel, ) * 2, 0)

                        if sample.face_type == FaceType.MARK_ONLY:
                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, sample.shape[0], face_type)
                            img = cv2.warpAffine(
                                img,
                                mat, (sample.shape[0], sample.shape[0]),
                                flags=cv2.INTER_CUBIC)
                            img = imagelib.warp_by_params(
                                params,
                                img,
                                warp,
                                transform,
                                can_flip=True,
                                border_replicate=True)
                            img = cv2.resize(img, (resolution, resolution),
                                             cv2.INTER_CUBIC)
                        else:
                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, resolution, face_type)
                            img = imagelib.warp_by_params(
                                params,
                                img,
                                warp,
                                transform,
                                can_flip=True,
                                border_replicate=True)
                            img = cv2.warpAffine(
                                img,
                                mat, (resolution, resolution),
                                borderMode=cv2.BORDER_REPLICATE,
                                flags=cv2.INTER_CUBIC)

                        img = np.clip(img.astype(np.float32), 0, 1)

                        # Apply random color transfer
                        if ct_mode is not None and ct_sample is not None:
                            if ct_sample_bgr is None:
                                ct_sample_bgr = ct_sample.load_bgr()
                            img = imagelib.color_transfer(
                                ct_mode, img,
                                cv2.resize(ct_sample_bgr,
                                           (resolution, resolution),
                                           cv2.INTER_LINEAR))

                        # Transform from BGR to desired channel_type
                        if channel_type == SPCT.BGR:
                            out_sample = img
                        elif channel_type == SPCT.BGR_SHUFFLE:
                            l_rnd_state = np.random.RandomState(
                                sample_rnd_seed)
                            out_sample = np.take(img,
                                                 l_rnd_state.permutation(
                                                     img.shape[-1]),
                                                 axis=-1)
                        elif channel_type == SPCT.BGR_RANDOM_HSV_SHIFT:
                            l_rnd_state = np.random.RandomState(
                                sample_rnd_seed)
                            hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
                            h, s, v = cv2.split(hsv)
                            h = (h + l_rnd_state.randint(360)) % 360
                            s = np.clip(s + l_rnd_state.random() - 0.5, 0, 1)
                            v = np.clip(v + l_rnd_state.random() - 0.5, 0, 1)
                            hsv = cv2.merge([h, s, v])
                            out_sample = np.clip(
                                cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), 0, 1)
                        elif channel_type == SPCT.BGR_RANDOM_RGB_LEVELS:
                            l_rnd_state = np.random.RandomState(
                                sample_rnd_seed)
                            np_rnd = l_rnd_state.rand
                            inBlack = np.array([
                                np_rnd() * 0.25,
                                np_rnd() * 0.25,
                                np_rnd() * 0.25
                            ],
                                               dtype=np.float32)
                            inWhite = np.array([
                                1.0 - np_rnd() * 0.25, 1.0 - np_rnd() * 0.25,
                                1.0 - np_rnd() * 0.25
                            ],
                                               dtype=np.float32)
                            inGamma = np.array([
                                0.5 + np_rnd(), 0.5 + np_rnd(), 0.5 + np_rnd()
                            ],
                                               dtype=np.float32)
                            outBlack = np.array([0.0, 0.0, 0.0],
                                                dtype=np.float32)
                            outWhite = np.array([1.0, 1.0, 1.0],
                                                dtype=np.float32)
                            out_sample = np.clip(
                                (img - inBlack) / (inWhite - inBlack), 0, 1)
                            out_sample = (out_sample**(1 / inGamma)) * (
                                outWhite - outBlack) + outBlack
                            out_sample = np.clip(out_sample, 0, 1)
                        elif channel_type == SPCT.G:
                            out_sample = cv2.cvtColor(img,
                                                      cv2.COLOR_BGR2GRAY)[...,
                                                                          None]
                        elif channel_type == SPCT.GGG:
                            out_sample = np.repeat(
                                np.expand_dims(
                                    cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), -1),
                                (3, ), -1)

                    # Final transformations
                    if not debug:
                        if normalize_tanh:
                            out_sample = np.clip(out_sample * 2.0 - 1.0, -1.0,
                                                 1.0)
                    if data_format == "NCHW":
                        out_sample = np.transpose(out_sample, (2, 0, 1))
                #else:
                #    img  = imagelib.warp_by_params (params, img,  warp, transform, can_flip=True, border_replicate=True)
                #    img  = cv2.resize( img,  (resolution,resolution), cv2.INTER_CUBIC )
                elif sample_type == SPST.LANDMARKS_ARRAY:
                    l = sample.landmarks
                    l = np.concatenate([
                        np.expand_dims(l[:, 0] / w, -1),
                        np.expand_dims(l[:, 1] / h, -1)
                    ], -1)
                    l = np.clip(l, 0.0, 1.0)
                    out_sample = l
                elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
                    pitch_yaw_roll = sample.get_pitch_yaw_roll()

                    if params['flip']:
                        yaw = -yaw

                    if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
                        pitch = np.clip((pitch / math.pi) / 2.0 + 0.5, 0, 1)
                        yaw = np.clip((yaw / math.pi) / 2.0 + 0.5, 0, 1)
                        roll = np.clip((roll / math.pi) / 2.0 + 0.5, 0, 1)

                    out_sample = (pitch, yaw, roll)
                else:
                    raise ValueError('expected sample_type')

                outputs_sample.append(out_sample)
            outputs += [outputs_sample]

        return outputs
Esempio n. 3
0
    def process(samples,
                sample_process_options,
                output_sample_types,
                debug,
                ct_sample=None):
        SPTF = SampleProcessor.Types

        sample_rnd_seed = np.random.randint(0x80000000)

        outputs = []
        for sample in samples:
            sample_bgr = sample.load_bgr()
            ct_sample_bgr = None
            h, w, c = sample_bgr.shape

            is_face_sample = sample.landmarks is not None

            if debug and is_face_sample:
                LandmarksProcessor.draw_landmarks(sample_bgr, sample.landmarks,
                                                  (0, 1, 0))

            params = imagelib.gen_warp_params(
                sample_bgr,
                sample_process_options.random_flip,
                rotation_range=sample_process_options.rotation_range,
                scale_range=sample_process_options.scale_range,
                tx_range=sample_process_options.tx_range,
                ty_range=sample_process_options.ty_range,
                rnd_seed=sample_rnd_seed)

            outputs_sample = []
            for opts in output_sample_types:

                resolution = opts.get('resolution', 0)
                types = opts.get('types', [])

                motion_blur = opts.get('motion_blur', None)
                gaussian_blur = opts.get('gaussian_blur', None)

                ct_mode = opts.get('ct_mode', 'None')
                normalize_tanh = opts.get('normalize_tanh', False)
                data_format = opts.get('data_format', 'NHWC')

                img_type = SPTF.NONE
                target_face_type = SPTF.NONE
                mode_type = SPTF.NONE
                for t in types:
                    if t >= SPTF.IMG_TYPE_BEGIN and t < SPTF.IMG_TYPE_END:
                        img_type = t
                    elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
                        target_face_type = t
                    elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
                        mode_type = t

                if mode_type == SPTF.MODE_FACE_MASK_HULL and not is_face_sample:
                    raise ValueError(
                        "MODE_FACE_MASK_HULL applicable only for face samples")
                if mode_type == SPTF.MODE_FACE_MASK_STRUCT and not is_face_sample:
                    raise ValueError(
                        "MODE_FACE_MASK_STRUCT applicable only for face samples"
                    )
                if is_face_sample:
                    if target_face_type == SPTF.NONE:
                        raise ValueError(
                            "target face type must be defined for face samples"
                        )

                can_warp = (img_type == SPTF.IMG_WARPED
                            or img_type == SPTF.IMG_WARPED_TRANSFORMED)
                can_transform = (img_type == SPTF.IMG_WARPED_TRANSFORMED
                                 or img_type == SPTF.IMG_TRANSFORMED)

                if img_type == SPTF.NONE:
                    raise ValueError('expected IMG_ type')

                if img_type == SPTF.IMG_LANDMARKS_ARRAY:
                    l = sample.landmarks
                    l = np.concatenate([
                        np.expand_dims(l[:, 0] / w, -1),
                        np.expand_dims(l[:, 1] / h, -1)
                    ], -1)
                    l = np.clip(l, 0.0, 1.0)
                    out_sample = l
                elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
                    pitch_yaw_roll = sample.get_pitch_yaw_roll()

                    if params['flip']:
                        yaw = -yaw

                    if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
                        pitch = np.clip((pitch / math.pi) / 2.0 + 0.5, 0, 1)
                        yaw = np.clip((yaw / math.pi) / 2.0 + 0.5, 0, 1)
                        roll = np.clip((roll / math.pi) / 2.0 + 0.5, 0, 1)

                    out_sample = (pitch, yaw, roll)
                else:
                    if mode_type == SPTF.NONE:
                        raise ValueError('expected MODE_ type')

                    if mode_type == SPTF.MODE_FACE_MASK_HULL:
                        if sample.eyebrows_expand_mod is not None:
                            img = LandmarksProcessor.get_image_hull_mask(
                                sample_bgr.shape,
                                sample.landmarks,
                                eyebrows_expand_mod=sample.eyebrows_expand_mod)
                        else:
                            img = LandmarksProcessor.get_image_hull_mask(
                                sample_bgr.shape, sample.landmarks)

                        if sample.ie_polys is not None:
                            sample.ie_polys.overlay_mask(img)
                    elif mode_type == SPTF.MODE_FACE_MASK_STRUCT:
                        if sample.eyebrows_expand_mod is not None:
                            img = LandmarksProcessor.get_face_struct_mask(
                                sample_bgr.shape,
                                sample.landmarks,
                                eyebrows_expand_mod=sample.eyebrows_expand_mod)
                        else:
                            img = LandmarksProcessor.get_face_struct_mask(
                                sample_bgr.shape, sample.landmarks)
                    else:
                        img = sample_bgr
                        if motion_blur is not None:
                            chance, mb_max_size = motion_blur
                            chance = np.clip(chance, 0, 100)

                            if np.random.randint(100) < chance:
                                img = imagelib.LinearMotionBlur(
                                    img,
                                    np.random.randint(mb_max_size) + 1,
                                    np.random.randint(360))

                        if gaussian_blur is not None:
                            chance, kernel_max_size = gaussian_blur
                            chance = np.clip(chance, 0, 100)

                            if np.random.randint(100) < chance:
                                img = cv2.GaussianBlur(
                                    img,
                                    (np.random.randint(kernel_max_size) * 2 +
                                     1, ) * 2, 0)

                    if is_face_sample:
                        target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[
                            target_face_type]
                        if target_ft > sample.face_type:
                            raise Exception(
                                'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.'
                                %
                                (sample.filename, sample.face_type, target_ft))

                        if sample.face_type == FaceType.MARK_ONLY:
                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, sample.shape[0], target_ft)

                            if mode_type == SPTF.MODE_FACE_MASK_HULL or mode_type == SPTF.MODE_FACE_MASK_STRUCT:
                                img = cv2.warpAffine(
                                    img,
                                    mat, (sample.shape[0], sample.shape[0]),
                                    flags=cv2.INTER_CUBIC)
                                img = imagelib.warp_by_params(
                                    params,
                                    img,
                                    can_warp,
                                    can_transform,
                                    can_flip=True,
                                    border_replicate=False)
                                img = cv2.resize(img, (resolution, resolution),
                                                 cv2.INTER_CUBIC)[..., None]
                            else:
                                img = cv2.warpAffine(
                                    img,
                                    mat, (sample.shape[0], sample.shape[0]),
                                    flags=cv2.INTER_CUBIC)
                                img = imagelib.warp_by_params(
                                    params,
                                    img,
                                    can_warp,
                                    can_transform,
                                    can_flip=True,
                                    border_replicate=True)
                                img = cv2.resize(img, (resolution, resolution),
                                                 cv2.INTER_CUBIC)

                        else:
                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, resolution, target_ft)

                            if mode_type == SPTF.MODE_FACE_MASK_HULL or mode_type == SPTF.MODE_FACE_MASK_STRUCT:
                                img = imagelib.warp_by_params(
                                    params,
                                    img,
                                    can_warp,
                                    can_transform,
                                    can_flip=True,
                                    border_replicate=False)
                                img = cv2.warpAffine(
                                    img,
                                    mat, (resolution, resolution),
                                    borderMode=cv2.BORDER_CONSTANT,
                                    flags=cv2.INTER_CUBIC)[..., None]
                            else:
                                img = imagelib.warp_by_params(
                                    params,
                                    img,
                                    can_warp,
                                    can_transform,
                                    can_flip=True,
                                    border_replicate=True)
                                img = cv2.warpAffine(
                                    img,
                                    mat, (resolution, resolution),
                                    borderMode=cv2.BORDER_REPLICATE,
                                    flags=cv2.INTER_CUBIC)
                    else:
                        img = imagelib.warp_by_params(params,
                                                      img,
                                                      can_warp,
                                                      can_transform,
                                                      can_flip=True,
                                                      border_replicate=True)
                        img = cv2.resize(img, (resolution, resolution),
                                         cv2.INTER_CUBIC)

                    if mode_type == SPTF.MODE_FACE_MASK_HULL or mode_type == SPTF.MODE_FACE_MASK_STRUCT:
                        out_sample = np.clip(img.astype(np.float32), 0, 1)
                    else:
                        img = np.clip(img.astype(np.float32), 0, 1)

                        if ct_mode is not None and ct_sample is not None:
                            if ct_sample_bgr is None:
                                ct_sample_bgr = ct_sample.load_bgr()
                            img = imagelib.color_transfer(
                                ct_mode, img,
                                cv2.resize(ct_sample_bgr,
                                           (resolution, resolution),
                                           cv2.INTER_LINEAR))

                        if mode_type == SPTF.MODE_BGR:
                            out_sample = img
                        elif mode_type == SPTF.MODE_BGR_SHUFFLE:
                            rnd_state = np.random.RandomState(sample_rnd_seed)
                            out_sample = np.take(img,
                                                 rnd_state.permutation(
                                                     img.shape[-1]),
                                                 axis=-1)

                        elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT:
                            rnd_state = np.random.RandomState(sample_rnd_seed)
                            hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
                            h, s, v = cv2.split(hsv)
                            h = (h + rnd_state.randint(360)) % 360
                            s = np.clip(s + rnd_state.random() - 0.5, 0, 1)
                            v = np.clip(v + rnd_state.random() - 0.5, 0, 1)
                            hsv = cv2.merge([h, s, v])
                            out_sample = np.clip(
                                cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), 0, 1)
                        elif mode_type == SPTF.MODE_G:
                            out_sample = cv2.cvtColor(img,
                                                      cv2.COLOR_BGR2GRAY)[...,
                                                                          None]
                        elif mode_type == SPTF.MODE_GGG:
                            out_sample = np.repeat(
                                np.expand_dims(
                                    cv2.cvtColor(img, cv2.COLOR_BGR2GRAY), -1),
                                (3, ), -1)

                    if not debug:
                        if normalize_tanh:
                            out_sample = np.clip(out_sample * 2.0 - 1.0, -1.0,
                                                 1.0)

                    if data_format == "NCHW":
                        out_sample = np.transpose(out_sample, (2, 0, 1))

                outputs_sample.append(out_sample)
            outputs += [outputs_sample]

        return outputs
Esempio n. 4
0
def MergeMaskedFace(predictor_func, predictor_input_shape, cfg, frame_info,
                    img_bgr_uint8, img_bgr, img_face_landmarks):
    img_size = img_bgr.shape[1], img_bgr.shape[0]
    img_face_mask_a = LandmarksProcessor.get_image_hull_mask(
        img_bgr.shape, img_face_landmarks)

    if cfg.mode == 'original':
        return img_bgr, img_face_mask_a

    out_img = img_bgr.copy()
    out_merging_mask_a = None

    input_size = predictor_input_shape[0]
    mask_subres_size = input_size * 4
    output_size = input_size
    if cfg.super_resolution_power != 0:
        output_size *= 4

    face_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks,
                                                    output_size,
                                                    face_type=cfg.face_type)
    face_output_mat = LandmarksProcessor.get_transform_mat(
        img_face_landmarks,
        output_size,
        face_type=cfg.face_type,
        scale=1.0 + 0.01 * cfg.output_face_scale)

    if mask_subres_size == output_size:
        face_mask_output_mat = face_output_mat
    else:
        face_mask_output_mat = LandmarksProcessor.get_transform_mat(
            img_face_landmarks,
            mask_subres_size,
            face_type=cfg.face_type,
            scale=1.0 + 0.01 * cfg.output_face_scale)

    dst_face_bgr = cv2.warpAffine(img_bgr,
                                  face_mat, (output_size, output_size),
                                  flags=cv2.INTER_CUBIC)
    dst_face_bgr = np.clip(dst_face_bgr, 0, 1)

    dst_face_mask_a_0 = cv2.warpAffine(img_face_mask_a,
                                       face_mat, (output_size, output_size),
                                       flags=cv2.INTER_CUBIC)
    dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)

    predictor_input_bgr = cv2.resize(dst_face_bgr, (input_size, input_size))

    predicted = predictor_func(predictor_input_bgr)
    if isinstance(predicted, tuple):
        #merger return bgr,mask
        prd_face_bgr = np.clip(predicted[0], 0, 1.0)
        prd_face_mask_a_0 = np.clip(predicted[1], 0, 1.0)
        predictor_masked = True
    else:
        #merger return bgr only, using dst mask
        prd_face_bgr = np.clip(predicted, 0, 1.0)
        prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       (input_size, input_size))
        predictor_masked = False

    if cfg.super_resolution_power != 0:
        prd_face_bgr_enhanced = cfg.superres_func(prd_face_bgr)
        mod = cfg.super_resolution_power / 100.0
        prd_face_bgr = cv2.resize(prd_face_bgr, (output_size, output_size)) * (
            1.0 - mod) + prd_face_bgr_enhanced * mod
        prd_face_bgr = np.clip(prd_face_bgr, 0, 1)

    if cfg.super_resolution_power != 0:
        if predictor_masked:
            prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)
        else:
            prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)

    if cfg.mask_mode == 2:  #dst
        prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)
    elif cfg.mask_mode >= 3 and cfg.mask_mode <= 8:

        if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
            prd_face_fanseg_bgr = cv2.resize(prd_face_bgr,
                                             (cfg.fanseg_input_size, ) * 2)
            prd_face_fanseg_mask = cfg.fanseg_extract_func(
                FaceType.FULL, prd_face_fanseg_bgr)
            FAN_prd_face_mask_a_0 = cv2.resize(prd_face_fanseg_mask,
                                               (output_size, output_size),
                                               cv2.INTER_CUBIC)

        if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:

            full_face_fanseg_mat = LandmarksProcessor.get_transform_mat(
                img_face_landmarks,
                cfg.fanseg_input_size,
                face_type=FaceType.FULL)
            dst_face_fanseg_bgr = cv2.warpAffine(img_bgr,
                                                 full_face_fanseg_mat,
                                                 (cfg.fanseg_input_size, ) * 2,
                                                 flags=cv2.INTER_CUBIC)
            dst_face_fanseg_mask = cfg.fanseg_extract_func(
                FaceType.FULL, dst_face_fanseg_bgr)

            if cfg.face_type == FaceType.FULL:
                FAN_dst_face_mask_a_0 = cv2.resize(dst_face_fanseg_mask,
                                                   (output_size, output_size),
                                                   cv2.INTER_CUBIC)
            else:
                face_fanseg_mat = LandmarksProcessor.get_transform_mat(
                    img_face_landmarks,
                    cfg.fanseg_input_size,
                    face_type=cfg.face_type)

                fanseg_rect_corner_pts = np.array(
                    [[0, 0], [cfg.fanseg_input_size - 1, 0],
                     [0, cfg.fanseg_input_size - 1]],
                    dtype=np.float32)
                a = LandmarksProcessor.transform_points(fanseg_rect_corner_pts,
                                                        face_fanseg_mat,
                                                        invert=True)
                b = LandmarksProcessor.transform_points(
                    a, full_face_fanseg_mat)
                m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
                FAN_dst_face_mask_a_0 = cv2.warpAffine(
                    dst_face_fanseg_mask,
                    m, (cfg.fanseg_input_size, ) * 2,
                    flags=cv2.INTER_CUBIC)
                FAN_dst_face_mask_a_0 = cv2.resize(FAN_dst_face_mask_a_0,
                                                   (output_size, output_size),
                                                   cv2.INTER_CUBIC)

        if cfg.mask_mode == 3:  #FAN-prd
            prd_face_mask_a_0 = FAN_prd_face_mask_a_0
        elif cfg.mask_mode == 4:  #FAN-dst
            prd_face_mask_a_0 = FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 5:
            prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 6:
            prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 7:
            prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0

    prd_face_mask_a_0[prd_face_mask_a_0 < (1.0 /
                                           255.0)] = 0.0  # get rid of noise

    # resize to mask_subres_size
    if prd_face_mask_a_0.shape[0] != mask_subres_size:
        prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                       (mask_subres_size, mask_subres_size),
                                       cv2.INTER_CUBIC)

    # process mask in local predicted space
    if 'raw' not in cfg.mode:
        # add zero pad
        prd_face_mask_a_0 = np.pad(prd_face_mask_a_0, input_size)

        ero = cfg.erode_mask_modifier
        blur = cfg.blur_mask_modifier

        if ero > 0:
            prd_face_mask_a_0 = cv2.erode(prd_face_mask_a_0,
                                          cv2.getStructuringElement(
                                              cv2.MORPH_ELLIPSE, (ero, ero)),
                                          iterations=1)
        elif ero < 0:
            prd_face_mask_a_0 = cv2.dilate(prd_face_mask_a_0,
                                           cv2.getStructuringElement(
                                               cv2.MORPH_ELLIPSE,
                                               (-ero, -ero)),
                                           iterations=1)

        # clip eroded/dilated mask in actual predict area
        # pad with half blur size in order to accuratelly fade to zero at the boundary
        clip_size = input_size + blur // 2

        prd_face_mask_a_0[:clip_size, :] = 0
        prd_face_mask_a_0[-clip_size:, :] = 0
        prd_face_mask_a_0[:, :clip_size] = 0
        prd_face_mask_a_0[:, -clip_size:] = 0

        if blur > 0:
            blur = blur + (1 - blur % 2)
            prd_face_mask_a_0 = cv2.GaussianBlur(prd_face_mask_a_0,
                                                 (blur, blur), 0)

        prd_face_mask_a_0 = prd_face_mask_a_0[input_size:-input_size,
                                              input_size:-input_size]

        prd_face_mask_a_0 = np.clip(prd_face_mask_a_0, 0, 1)

    img_face_mask_a = cv2.warpAffine(prd_face_mask_a_0,
                                     face_mask_output_mat,
                                     img_size,
                                     np.zeros(img_bgr.shape[0:2],
                                              dtype=np.float32),
                                     flags=cv2.WARP_INVERSE_MAP
                                     | cv2.INTER_CUBIC)[..., None]
    img_face_mask_a = np.clip(img_face_mask_a, 0.0, 1.0)

    img_face_mask_a[img_face_mask_a < (1.0 / 255.0)] = 0.0  # get rid of noise

    if prd_face_mask_a_0.shape[0] != output_size:
        prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)

    prd_face_mask_a = prd_face_mask_a_0[..., None]
    prd_face_mask_area_a = prd_face_mask_a.copy()
    prd_face_mask_area_a[prd_face_mask_area_a > 0] = 1.0

    if 'raw' in cfg.mode:
        if cfg.mode == 'raw-rgb':
            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_merging_mask_a = img_face_mask_a

        out_img = np.clip(out_img, 0.0, 1.0)
    else:
        #averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
        ar = []
        for i in range(1, 10):
            maxregion = np.argwhere(img_face_mask_a > i / 10.0)
            if maxregion.size != 0:
                miny, minx = maxregion.min(axis=0)[:2]
                maxy, maxx = maxregion.max(axis=0)[:2]
                lenx = maxx - minx
                leny = maxy - miny
                if min(lenx, leny) >= 4:
                    ar += [[lenx, leny]]

        if len(ar) > 0:

            if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:  #rct
                    prd_face_bgr = imagelib.reinhard_color_transfer(
                        np.clip(prd_face_bgr * prd_face_mask_area_a * 255, 0,
                                255).astype(np.uint8),
                        np.clip(dst_face_bgr * prd_face_mask_area_a * 255, 0,
                                255).astype(np.uint8),
                    )

                    prd_face_bgr = np.clip(
                        prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                elif cfg.color_transfer_mode == 2:  #lct
                    prd_face_bgr = imagelib.linear_color_transfer(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 3:  #mkl
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    prd_face_bgr = imagelib.color_transfer_sot(
                        prd_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)
                    prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    prd_face_bgr = imagelib.color_transfer_mix(
                        prd_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)

            if cfg.mode == 'hist-match':
                hist_mask_a = np.ones(prd_face_bgr.shape[:2] + (1, ),
                                      dtype=np.float32)

                if cfg.masked_hist_match:
                    hist_mask_a *= prd_face_mask_area_a

                white = (1.0 - hist_mask_a) * np.ones(
                    prd_face_bgr.shape[:2] + (1, ), dtype=np.float32)

                hist_match_1 = prd_face_bgr * hist_mask_a + white
                hist_match_1[hist_match_1 > 1.0] = 1.0

                hist_match_2 = dst_face_bgr * hist_mask_a + white
                hist_match_2[hist_match_1 > 1.0] = 1.0

                prd_face_bgr = imagelib.color_hist_match(
                    hist_match_1, hist_match_2,
                    cfg.hist_match_threshold).astype(dtype=np.float32)

            if 'seamless' in cfg.mode:
                #mask used for cv2.seamlessClone
                img_face_seamless_mask_a = None
                for i in range(1, 10):
                    a = img_face_mask_a > i / 10.0
                    if len(np.argwhere(a)) == 0:
                        continue
                    img_face_seamless_mask_a = img_face_mask_a.copy()
                    img_face_seamless_mask_a[a] = 1.0
                    img_face_seamless_mask_a[img_face_seamless_mask_a <= i /
                                             10.0] = 0.0
                    break

            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)

            out_img = np.clip(out_img, 0.0, 1.0)

            if 'seamless' in cfg.mode:
                try:
                    #calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
                    l, t, w, h = cv2.boundingRect(
                        (img_face_seamless_mask_a * 255).astype(np.uint8))
                    s_maskx, s_masky = int(l + w / 2), int(t + h / 2)
                    out_img = cv2.seamlessClone(
                        (out_img * 255).astype(np.uint8), img_bgr_uint8,
                        (img_face_seamless_mask_a * 255).astype(np.uint8),
                        (s_maskx, s_masky), cv2.NORMAL_CLONE)
                    out_img = out_img.astype(dtype=np.float32) / 255.0
                except Exception as e:
                    #seamlessClone may fail in some cases
                    e_str = traceback.format_exc()

                    if 'MemoryError' in e_str:
                        raise Exception(
                            "Seamless fail: " + e_str
                        )  #reraise MemoryError in order to reprocess this data by other processes
                    else:
                        print("Seamless fail: " + e_str)

            out_img = img_bgr * (1 - img_face_mask_a) + (out_img *
                                                         img_face_mask_a)

            out_face_bgr = cv2.warpAffine(out_img,
                                          face_mat, (output_size, output_size),
                                          flags=cv2.INTER_CUBIC)

            if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:
                    out_face_bgr = imagelib.reinhard_color_transfer(
                        np.clip(out_face_bgr * prd_face_mask_area_a * 255, 0,
                                255).astype(np.uint8),
                        np.clip(dst_face_bgr * prd_face_mask_area_a * 255, 0,
                                255).astype(np.uint8))
                    out_face_bgr = np.clip(
                        out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                elif cfg.color_transfer_mode == 2:  #lct
                    out_face_bgr = imagelib.linear_color_transfer(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 3:  #mkl
                    out_face_bgr = imagelib.color_transfer_mkl(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    out_face_bgr = imagelib.color_transfer_mkl(
                        out_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    out_face_bgr = imagelib.color_transfer_idt(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    out_face_bgr = imagelib.color_transfer_idt(
                        out_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    out_face_bgr = imagelib.color_transfer_sot(
                        out_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)
                    out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    out_face_bgr = imagelib.color_transfer_mix(
                        out_face_bgr * prd_face_mask_area_a,
                        dst_face_bgr * prd_face_mask_area_a)

            if cfg.mode == 'seamless-hist-match':
                out_face_bgr = imagelib.color_hist_match(
                    out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)

            cfg_mp = cfg.motion_blur_power / 100.0
            if cfg_mp != 0:
                k_size = int(frame_info.motion_power * cfg_mp)
                if k_size >= 1:
                    k_size = np.clip(k_size + 1, 2, 50)
                    if cfg.super_resolution_power != 0:
                        k_size *= 2
                    out_face_bgr = imagelib.LinearMotionBlur(
                        out_face_bgr, k_size, frame_info.motion_deg)

            if cfg.blursharpen_amount != 0:
                out_face_bgr = cfg.blursharpen_func(out_face_bgr,
                                                    cfg.sharpen_mode, 3,
                                                    cfg.blursharpen_amount)

            if cfg.image_denoise_power != 0:
                n = cfg.image_denoise_power
                while n > 0:
                    img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
                    if int(n / 100) != 0:
                        img_bgr = img_bgr_denoised
                    else:
                        pass_power = (n % 100) / 100.0
                        img_bgr = img_bgr * (
                            1.0 - pass_power) + img_bgr_denoised * pass_power
                    n = max(n - 10, 0)

            if cfg.bicubic_degrade_power != 0:
                p = 1.0 - cfg.bicubic_degrade_power / 101.0
                img_bgr_downscaled = cv2.resize(
                    img_bgr, (int(img_size[0] * p), int(img_size[1] * p)),
                    cv2.INTER_CUBIC)
                img_bgr = cv2.resize(img_bgr_downscaled, img_size,
                                     cv2.INTER_CUBIC)

            new_out = cv2.warpAffine(out_face_bgr, face_mat, img_size,
                                     img_bgr.copy(),
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_img = np.clip(
                img_bgr * (1 - img_face_mask_a) + (new_out * img_face_mask_a),
                0, 1.0)

            if cfg.color_degrade_power != 0:
                out_img_reduced = imagelib.reduce_colors(out_img, 256)
                if cfg.color_degrade_power == 100:
                    out_img = out_img_reduced
                else:
                    alpha = cfg.color_degrade_power / 100.0
                    out_img = (out_img * (1.0 - alpha) +
                               out_img_reduced * alpha)

        out_merging_mask_a = img_face_mask_a

    return out_img, out_merging_mask_a
Esempio n. 5
0
def MergeMaskedFace(predictor_func, predictor_input_shape, cfg, frame_info,
                    img_bgr_uint8, img_bgr, img_face_landmarks):
    img_size = img_bgr.shape[1], img_bgr.shape[0]
    img_face_mask_a = LandmarksProcessor.get_image_hull_mask(
        img_bgr.shape, img_face_landmarks)

    if cfg.mode == 'original':
        if cfg.export_mask_alpha:
            img_bgr = np.concatenate([img_bgr, img_face_mask_a], -1)
        return img_bgr, img_face_mask_a

    out_img = img_bgr.copy()
    out_merging_mask = None

    output_size = predictor_input_shape[0]
    if cfg.super_resolution_mode != 0:
        output_size *= 4

    face_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks,
                                                    output_size,
                                                    face_type=cfg.face_type)
    face_output_mat = LandmarksProcessor.get_transform_mat(
        img_face_landmarks,
        output_size,
        face_type=cfg.face_type,
        scale=1.0 + 0.01 * cfg.output_face_scale)

    dst_face_bgr = cv2.warpAffine(img_bgr,
                                  face_mat, (output_size, output_size),
                                  flags=cv2.INTER_CUBIC)
    dst_face_bgr = np.clip(dst_face_bgr, 0, 1)

    dst_face_mask_a_0 = cv2.warpAffine(img_face_mask_a,
                                       face_mat, (output_size, output_size),
                                       flags=cv2.INTER_CUBIC)
    dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)

    predictor_input_bgr = cv2.resize(dst_face_bgr, predictor_input_shape[0:2])

    predicted = predictor_func(predictor_input_bgr)
    if isinstance(predicted, tuple):
        #merger return bgr,mask
        prd_face_bgr = np.clip(predicted[0], 0, 1.0)
        prd_face_mask_a_0 = np.clip(predicted[1], 0, 1.0)
        predictor_masked = True
    else:
        #merger return bgr only, using dst mask
        prd_face_bgr = np.clip(predicted, 0, 1.0)
        prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       predictor_input_shape[0:2])
        predictor_masked = False

    if cfg.super_resolution_mode:
        prd_face_bgr = cfg.superres_func(cfg.super_resolution_mode,
                                         prd_face_bgr)
        prd_face_bgr = np.clip(prd_face_bgr, 0, 1)

        if predictor_masked:
            prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)
        else:
            prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)

    if cfg.mask_mode == 2:  #dst
        prd_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)
    elif cfg.mask_mode >= 3 and cfg.mask_mode <= 8:

        if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
            prd_face_fanseg_bgr = cv2.resize(prd_face_bgr,
                                             (cfg.fanseg_input_size, ) * 2)
            prd_face_fanseg_mask = cfg.fanseg_extract_func(
                FaceType.FULL, prd_face_fanseg_bgr)
            FAN_prd_face_mask_a_0 = cv2.resize(prd_face_fanseg_mask,
                                               (output_size, output_size),
                                               cv2.INTER_CUBIC)

        if cfg.mask_mode >= 4 and cfg.mask_mode <= 7:

            full_face_fanseg_mat = LandmarksProcessor.get_transform_mat(
                img_face_landmarks,
                cfg.fanseg_input_size,
                face_type=FaceType.FULL)
            dst_face_fanseg_bgr = cv2.warpAffine(img_bgr,
                                                 full_face_fanseg_mat,
                                                 (cfg.fanseg_input_size, ) * 2,
                                                 flags=cv2.INTER_CUBIC)
            dst_face_fanseg_mask = cfg.fanseg_extract_func(
                FaceType.FULL, dst_face_fanseg_bgr)

            if cfg.face_type == FaceType.FULL:
                FAN_dst_face_mask_a_0 = cv2.resize(dst_face_fanseg_mask,
                                                   (output_size, output_size),
                                                   cv2.INTER_CUBIC)
            else:
                face_fanseg_mat = LandmarksProcessor.get_transform_mat(
                    img_face_landmarks,
                    cfg.fanseg_input_size,
                    face_type=cfg.face_type)

                fanseg_rect_corner_pts = np.array(
                    [[0, 0], [cfg.fanseg_input_size - 1, 0],
                     [0, cfg.fanseg_input_size - 1]],
                    dtype=np.float32)
                a = LandmarksProcessor.transform_points(fanseg_rect_corner_pts,
                                                        face_fanseg_mat,
                                                        invert=True)
                b = LandmarksProcessor.transform_points(
                    a, full_face_fanseg_mat)
                m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
                FAN_dst_face_mask_a_0 = cv2.warpAffine(
                    dst_face_fanseg_mask,
                    m, (cfg.fanseg_input_size, ) * 2,
                    flags=cv2.INTER_CUBIC)
                FAN_dst_face_mask_a_0 = cv2.resize(FAN_dst_face_mask_a_0,
                                                   (output_size, output_size),
                                                   cv2.INTER_CUBIC)

        if cfg.mask_mode == 3:  #FAN-prd
            prd_face_mask_a_0 = FAN_prd_face_mask_a_0
        elif cfg.mask_mode == 4:  #FAN-dst
            prd_face_mask_a_0 = FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 5:
            prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 6:
            prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        elif cfg.mask_mode == 7:
            prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
        #elif cfg.mask_mode == 8: #FANCHQ-dst
        #    prd_face_mask_a_0 = FANCHQ_dst_face_mask_a_0

    prd_face_mask_a_0[prd_face_mask_a_0 < 0.001] = 0.0

    prd_face_mask_a = prd_face_mask_a_0[..., np.newaxis]
    prd_face_mask_aaa = np.repeat(prd_face_mask_a, (3, ), axis=-1)

    img_face_mask_aaa = cv2.warpAffine(prd_face_mask_aaa,
                                       face_output_mat,
                                       img_size,
                                       np.zeros(img_bgr.shape,
                                                dtype=np.float32),
                                       flags=cv2.WARP_INVERSE_MAP
                                       | cv2.INTER_CUBIC)
    img_face_mask_aaa = np.clip(img_face_mask_aaa, 0.0, 1.0)
    img_face_mask_aaa[img_face_mask_aaa <= 0.1] = 0.0  #get rid of noise

    if 'raw' in cfg.mode:
        face_corner_pts = np.array(
            [[0, 0], [output_size - 1, 0], [output_size - 1, output_size - 1],
             [0, output_size - 1]],
            dtype=np.float32)
        square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
        cv2.fillConvexPoly(square_mask, \
                           LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
                           (1,1,1) )

        if cfg.mode == 'raw-rgb':
            out_merging_mask = square_mask

        if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)

        if cfg.mode == 'raw-rgb-mask':
            out_img = np.concatenate(
                [out_img,
                 np.expand_dims(img_face_mask_aaa[:, :, 0], -1)], -1)
            out_merging_mask = square_mask

        elif cfg.mode == 'raw-mask-only':
            out_img = img_face_mask_aaa
            out_merging_mask = img_face_mask_aaa
        elif cfg.mode == 'raw-predicted-only':
            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     np.zeros(img_bgr.shape, dtype=np.float32),
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_merging_mask = square_mask

        out_img = np.clip(out_img, 0.0, 1.0)
    else:
        #averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
        ar = []
        for i in range(1, 10):
            maxregion = np.argwhere(img_face_mask_aaa > i / 10.0)
            if maxregion.size != 0:
                miny, minx = maxregion.min(axis=0)[:2]
                maxy, maxx = maxregion.max(axis=0)[:2]
                lenx = maxx - minx
                leny = maxy - miny
                if min(lenx, leny) >= 4:
                    ar += [[lenx, leny]]

        if len(ar) > 0:
            lenx, leny = np.mean(ar, axis=0)
            lowest_len = min(lenx, leny)

            if cfg.erode_mask_modifier != 0:
                ero = int(lowest_len * (0.126 - lowest_len * 0.00004551365) *
                          0.01 * cfg.erode_mask_modifier)
                if ero > 0:
                    img_face_mask_aaa = cv2.erode(img_face_mask_aaa,
                                                  cv2.getStructuringElement(
                                                      cv2.MORPH_ELLIPSE,
                                                      (ero, ero)),
                                                  iterations=1)
                elif ero < 0:
                    img_face_mask_aaa = cv2.dilate(img_face_mask_aaa,
                                                   cv2.getStructuringElement(
                                                       cv2.MORPH_ELLIPSE,
                                                       (-ero, -ero)),
                                                   iterations=1)

            if cfg.clip_hborder_mask_per > 0:  #clip hborder before blur
                prd_hborder_rect_mask_a = np.ones(prd_face_mask_a.shape,
                                                  dtype=np.float32)
                prd_border_size = int(prd_hborder_rect_mask_a.shape[1] *
                                      cfg.clip_hborder_mask_per)
                prd_hborder_rect_mask_a[:, 0:prd_border_size, :] = 0
                prd_hborder_rect_mask_a[:, -prd_border_size:, :] = 0
                prd_hborder_rect_mask_a[-prd_border_size:, :, :] = 0
                prd_hborder_rect_mask_a = np.expand_dims(
                    cv2.blur(prd_hborder_rect_mask_a,
                             (prd_border_size, prd_border_size)), -1)

                img_prd_hborder_rect_mask_a = cv2.warpAffine(
                    prd_hborder_rect_mask_a, face_output_mat, img_size,
                    np.zeros(img_bgr.shape, dtype=np.float32),
                    cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC)
                img_prd_hborder_rect_mask_a = np.expand_dims(
                    img_prd_hborder_rect_mask_a, -1)
                img_face_mask_aaa *= img_prd_hborder_rect_mask_a
                img_face_mask_aaa = np.clip(img_face_mask_aaa, 0, 1.0)

            if cfg.blur_mask_modifier > 0:
                blur = int(lowest_len * 0.10 * 0.01 * cfg.blur_mask_modifier)
                if blur > 0:
                    img_face_mask_aaa = cv2.blur(img_face_mask_aaa,
                                                 (blur, blur))

            img_face_mask_aaa = np.clip(img_face_mask_aaa, 0, 1.0)

            if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:  #rct
                    prd_face_bgr = imagelib.reinhard_color_transfer(
                        (prd_face_bgr * 255).astype(np.uint8),
                        (dst_face_bgr * 255).astype(np.uint8),
                        source_mask=prd_face_mask_a,
                        target_mask=prd_face_mask_a)
                    prd_face_bgr = np.clip(
                        prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)

                elif cfg.color_transfer_mode == 2:  #lct
                    prd_face_bgr = imagelib.linear_color_transfer(
                        prd_face_bgr, dst_face_bgr)
                    prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 3:  #mkl
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    prd_face_bgr = imagelib.color_transfer_sot(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                    prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    prd_face_bgr = imagelib.color_transfer_mix(
                        prd_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)

            if cfg.mode == 'hist-match-bw':
                prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
                prd_face_bgr = np.repeat(np.expand_dims(prd_face_bgr, -1),
                                         (3, ), -1)

            if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
                hist_mask_a = np.ones(prd_face_bgr.shape[:2] + (1, ),
                                      dtype=np.float32)

                if cfg.masked_hist_match:
                    hist_mask_a *= prd_face_mask_a

                white = (1.0 - hist_mask_a) * np.ones(
                    prd_face_bgr.shape[:2] + (1, ), dtype=np.float32)

                hist_match_1 = prd_face_bgr * hist_mask_a + white
                hist_match_1[hist_match_1 > 1.0] = 1.0

                hist_match_2 = dst_face_bgr * hist_mask_a + white
                hist_match_2[hist_match_1 > 1.0] = 1.0

                prd_face_bgr = imagelib.color_hist_match(
                    hist_match_1, hist_match_2,
                    cfg.hist_match_threshold).astype(dtype=np.float32)

            if cfg.mode == 'hist-match-bw':
                prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)

            if 'seamless' in cfg.mode:
                #mask used for cv2.seamlessClone
                img_face_mask_a = img_face_mask_aaa[..., 0:1]

                img_face_seamless_mask_a = None
                for i in range(1, 10):
                    a = img_face_mask_a > i / 10.0
                    if len(np.argwhere(a)) == 0:
                        continue
                    img_face_seamless_mask_a = img_face_mask_a.copy()
                    img_face_seamless_mask_a[a] = 1.0
                    img_face_seamless_mask_a[img_face_seamless_mask_a <= i /
                                             10.0] = 0.0
                    break

            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)

            out_img = np.clip(out_img, 0.0, 1.0)

            if 'seamless' in cfg.mode:
                try:
                    #calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
                    l, t, w, h = cv2.boundingRect(
                        (img_face_seamless_mask_a * 255).astype(np.uint8))
                    s_maskx, s_masky = int(l + w / 2), int(t + h / 2)
                    out_img = cv2.seamlessClone(
                        (out_img * 255).astype(np.uint8), img_bgr_uint8,
                        (img_face_seamless_mask_a * 255).astype(np.uint8),
                        (s_maskx, s_masky), cv2.NORMAL_CLONE)
                    out_img = out_img.astype(dtype=np.float32) / 255.0
                except Exception as e:
                    #seamlessClone may fail in some cases
                    e_str = traceback.format_exc()

                    if 'MemoryError' in e_str:
                        raise Exception(
                            "Seamless fail: " + e_str
                        )  #reraise MemoryError in order to reprocess this data by other processes
                    else:
                        print("Seamless fail: " + e_str)

            out_img = img_bgr * (1 - img_face_mask_aaa) + (out_img *
                                                           img_face_mask_aaa)

            out_face_bgr = cv2.warpAffine(out_img, face_mat,
                                          (output_size, output_size))

            if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:
                    face_mask_aaa = cv2.warpAffine(img_face_mask_aaa, face_mat,
                                                   (output_size, output_size))

                    out_face_bgr = imagelib.reinhard_color_transfer(
                        (out_face_bgr * 255).astype(np.uint8),
                        (dst_face_bgr * 255).astype(np.uint8),
                        source_mask=face_mask_aaa,
                        target_mask=face_mask_aaa)
                    out_face_bgr = np.clip(
                        out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                elif cfg.color_transfer_mode == 2:  #lct
                    out_face_bgr = imagelib.linear_color_transfer(
                        out_face_bgr, dst_face_bgr)
                    out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 3:  #mkl
                    out_face_bgr = imagelib.color_transfer_mkl(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    out_face_bgr = imagelib.color_transfer_mkl(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    out_face_bgr = imagelib.color_transfer_idt(
                        out_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    out_face_bgr = imagelib.color_transfer_idt(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    out_face_bgr = imagelib.color_transfer_sot(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)
                    out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    out_face_bgr = imagelib.color_transfer_mix(
                        out_face_bgr * prd_face_mask_a,
                        dst_face_bgr * prd_face_mask_a)

            if cfg.mode == 'seamless-hist-match':
                out_face_bgr = imagelib.color_hist_match(
                    out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)

            cfg_mp = cfg.motion_blur_power / 100.0
            if cfg_mp != 0:
                k_size = int(frame_info.motion_power * cfg_mp)
                if k_size >= 1:
                    k_size = np.clip(k_size + 1, 2, 50)
                    if cfg.super_resolution_mode:
                        k_size *= 2
                    out_face_bgr = imagelib.LinearMotionBlur(
                        out_face_bgr, k_size, frame_info.motion_deg)

            if cfg.blursharpen_amount != 0:
                out_face_bgr = cfg.blursharpen_func(out_face_bgr,
                                                    cfg.sharpen_mode, 3,
                                                    cfg.blursharpen_amount)

            if cfg.image_denoise_power != 0:
                n = cfg.image_denoise_power
                while n > 0:
                    img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
                    if int(n / 100) != 0:
                        img_bgr = img_bgr_denoised
                    else:
                        pass_power = (n % 100) / 100.0
                        img_bgr = img_bgr * (
                            1.0 - pass_power) + img_bgr_denoised * pass_power
                    n = max(n - 10, 0)

            if cfg.bicubic_degrade_power != 0:
                p = 1.0 - cfg.bicubic_degrade_power / 101.0
                img_bgr_downscaled = cv2.resize(
                    img_bgr, (int(img_size[0] * p), int(img_size[1] * p)),
                    cv2.INTER_CUBIC)
                img_bgr = cv2.resize(img_bgr_downscaled, img_size,
                                     cv2.INTER_CUBIC)

            new_out = cv2.warpAffine(out_face_bgr, face_mat, img_size,
                                     img_bgr.copy(),
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_img = np.clip(
                img_bgr * (1 - img_face_mask_aaa) +
                (new_out * img_face_mask_aaa), 0, 1.0)

            if cfg.color_degrade_power != 0:
                out_img_reduced = imagelib.reduce_colors(out_img, 256)
                if cfg.color_degrade_power == 100:
                    out_img = out_img_reduced
                else:
                    alpha = cfg.color_degrade_power / 100.0
                    out_img = (out_img * (1.0 - alpha) +
                               out_img_reduced * alpha)

        out_merging_mask = img_face_mask_aaa

    return out_img, out_merging_mask[..., 0:1]
Esempio n. 6
0
    def batch_func(self, param):
        images_path, masks_path, mask_file_id_hash, data_format = param

        file_ids = list(mask_file_id_hash.keys())

        shuffle_file_ids = []

        resolution = 256
        random_flip = True
        rotation_range = [-15, 15]
        scale_range = [-0.10, 0.95]
        tx_range = [-0.3, 0.3]
        ty_range = [-0.3, 0.3]

        random_bilinear_resize = (25, 75)
        motion_blur = (25, 5)
        gaussian_blur = (25, 5)

        bs = self.batch_size
        while True:
            batches = None

            n_batch = 0
            while n_batch < bs:
                try:
                    if len(shuffle_file_ids) == 0:
                        shuffle_file_ids = file_ids.copy()
                        np.random.shuffle(shuffle_file_ids)

                    file_id = shuffle_file_ids.pop()
                    masks = mask_file_id_hash[file_id]
                    image_path = images_path / f'{file_id}.jpg'

                    skin_path = masks.get(MaskType.skin, None)
                    hair_path = masks.get(MaskType.hair, None)
                    hat_path = masks.get(MaskType.hat, None)
                    #neck_path = masks.get(MaskType.neck, None)

                    img = cv2_imread(image_path).astype(np.float32) / 255.0
                    mask = cv2_imread(masks_path / skin_path)[..., 0:1].astype(
                        np.float32) / 255.0

                    if hair_path is not None:
                        hair_path = masks_path / hair_path
                        if hair_path.exists():
                            hair = cv2_imread(hair_path)[..., 0:1].astype(
                                np.float32) / 255.0
                            mask *= (1 - hair)

                    if hat_path is not None:
                        hat_path = masks_path / hat_path
                        if hat_path.exists():
                            hat = cv2_imread(hat_path)[..., 0:1].astype(
                                np.float32) / 255.0
                            mask *= (1 - hat)

                    #if neck_path is not None:
                    #    neck_path = masks_path / neck_path
                    #    if neck_path.exists():
                    #        neck = cv2_imread(neck_path)[...,0:1].astype(np.float32) / 255.0
                    #        mask = np.clip(mask+neck, 0, 1)

                    warp_params = imagelib.gen_warp_params(
                        resolution,
                        random_flip,
                        rotation_range=rotation_range,
                        scale_range=scale_range,
                        tx_range=tx_range,
                        ty_range=ty_range)

                    img = cv2.resize(img, (resolution, resolution),
                                     cv2.INTER_LANCZOS4)
                    h, s, v = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
                    h = (h + np.random.randint(360)) % 360
                    s = np.clip(s + np.random.random() - 0.5, 0, 1)
                    v = np.clip(v + np.random.random() / 2 - 0.25, 0, 1)
                    img = np.clip(
                        cv2.cvtColor(cv2.merge([h, s, v]), cv2.COLOR_HSV2BGR),
                        0, 1)

                    if motion_blur is not None:
                        chance, mb_max_size = motion_blur
                        chance = np.clip(chance, 0, 100)

                        mblur_rnd_chance = np.random.randint(100)
                        mblur_rnd_kernel = np.random.randint(mb_max_size) + 1
                        mblur_rnd_deg = np.random.randint(360)

                        if mblur_rnd_chance < chance:
                            img = imagelib.LinearMotionBlur(
                                img, mblur_rnd_kernel, mblur_rnd_deg)

                    img = imagelib.warp_by_params(warp_params,
                                                  img,
                                                  can_warp=True,
                                                  can_transform=True,
                                                  can_flip=True,
                                                  border_replicate=False,
                                                  cv2_inter=cv2.INTER_LANCZOS4)

                    if gaussian_blur is not None:
                        chance, kernel_max_size = gaussian_blur
                        chance = np.clip(chance, 0, 100)

                        gblur_rnd_chance = np.random.randint(100)
                        gblur_rnd_kernel = np.random.randint(
                            kernel_max_size) * 2 + 1

                        if gblur_rnd_chance < chance:
                            img = cv2.GaussianBlur(img,
                                                   (gblur_rnd_kernel, ) * 2, 0)

                    if random_bilinear_resize is not None:
                        chance, max_size_per = random_bilinear_resize
                        chance = np.clip(chance, 0, 100)
                        pick_chance = np.random.randint(100)
                        resize_to = resolution - int(
                            np.random.rand() * int(resolution *
                                                   (max_size_per / 100.0)))
                        img = cv2.resize(img, (resize_to, resize_to),
                                         cv2.INTER_LINEAR)
                        img = cv2.resize(img, (resolution, resolution),
                                         cv2.INTER_LINEAR)

                    mask = cv2.resize(mask, (resolution, resolution),
                                      cv2.INTER_LANCZOS4)[..., None]
                    mask = imagelib.warp_by_params(
                        warp_params,
                        mask,
                        can_warp=True,
                        can_transform=True,
                        can_flip=True,
                        border_replicate=False,
                        cv2_inter=cv2.INTER_LANCZOS4)
                    mask[mask < 0.5] = 0.0
                    mask[mask >= 0.5] = 1.0
                    mask = np.clip(mask, 0, 1)

                    if data_format == "NCHW":
                        img = np.transpose(img, (2, 0, 1))
                        mask = np.transpose(mask, (2, 0, 1))

                    if batches is None:
                        batches = [[], []]

                    batches[0].append(img)
                    batches[1].append(mask)

                    n_batch += 1
                except:
                    io.log_err(traceback.format_exc())

            yield [np.array(batch) for batch in batches]
Esempio n. 7
0
    def process(samples,
                sample_process_options,
                output_sample_types,
                debug,
                ct_sample=None):
        SPTF = SampleProcessor.Types

        sample_rnd_seed = np.random.randint(0x80000000)

        outputs = []
        for sample in samples:
            sample_bgr = sample.load_bgr()
            ct_sample_bgr = None
            ct_sample_mask = None
            h, w, c = sample_bgr.shape

            is_face_sample = sample.landmarks is not None

            if debug and is_face_sample:
                LandmarksProcessor.draw_landmarks(sample_bgr, sample.landmarks,
                                                  (0, 1, 0))

            params = imagelib.gen_warp_params(
                sample_bgr,
                sample_process_options.random_flip,
                rotation_range=sample_process_options.rotation_range,
                scale_range=sample_process_options.scale_range,
                tx_range=sample_process_options.tx_range,
                ty_range=sample_process_options.ty_range,
                rnd_seed=sample_rnd_seed)

            outputs_sample = []
            for opts in output_sample_types:

                resolution = opts.get('resolution', 0)
                types = opts.get('types', [])

                border_replicate = opts.get('border_replicate', True)
                random_sub_res = opts.get('random_sub_res', 0)
                normalize_std_dev = opts.get('normalize_std_dev', False)
                normalize_vgg = opts.get('normalize_vgg', False)
                motion_blur = opts.get('motion_blur', None)
                gaussian_blur = opts.get('gaussian_blur', None)

                ct_mode = opts.get('ct_mode', 'None')
                normalize_tanh = opts.get('normalize_tanh', False)
                data_format = opts.get('data_format', 'NHWC')

                img_type = SPTF.NONE
                target_face_type = SPTF.NONE
                face_mask_type = SPTF.NONE
                mode_type = SPTF.NONE
                for t in types:
                    if t >= SPTF.IMG_TYPE_BEGIN and t < SPTF.IMG_TYPE_END:
                        img_type = t
                    elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
                        target_face_type = t
                    elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
                        mode_type = t

                if img_type == SPTF.NONE:
                    raise ValueError('expected IMG_ type')

                if img_type == SPTF.IMG_LANDMARKS_ARRAY:
                    l = sample.landmarks
                    l = np.concatenate([
                        np.expand_dims(l[:, 0] / w, -1),
                        np.expand_dims(l[:, 1] / h, -1)
                    ], -1)
                    l = np.clip(l, 0.0, 1.0)
                    img = l
                elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
                    pitch_yaw_roll = sample.get_pitch_yaw_roll()

                    if params['flip']:
                        yaw = -yaw

                    if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
                        pitch = np.clip((pitch / math.pi) / 2.0 + 1.0, 0, 1)
                        yaw = np.clip((yaw / math.pi) / 2.0 + 1.0, 0, 1)
                        roll = np.clip((roll / math.pi) / 2.0 + 1.0, 0, 1)

                    img = (pitch, yaw, roll)
                else:
                    if mode_type == SPTF.NONE:
                        raise ValueError('expected MODE_ type')

                    def do_transform(img, mask):
                        warp = (img_type == SPTF.IMG_WARPED
                                or img_type == SPTF.IMG_WARPED_TRANSFORMED)
                        transform = (img_type == SPTF.IMG_WARPED_TRANSFORMED
                                     or img_type == SPTF.IMG_TRANSFORMED)
                        flip = img_type != SPTF.IMG_WARPED

                        img = imagelib.warp_by_params(params, img, warp,
                                                      transform, flip,
                                                      border_replicate)
                        if mask is not None:
                            mask = imagelib.warp_by_params(
                                params, mask, warp, transform, flip, False)
                            if len(mask.shape) == 2:
                                mask = mask[..., np.newaxis]

                        return img, mask

                    img = sample_bgr

                    ### Prepare a mask
                    mask = None
                    if is_face_sample:
                        if sample.eyebrows_expand_mod is not None:
                            mask = LandmarksProcessor.get_image_hull_mask(
                                img.shape,
                                sample.landmarks,
                                eyebrows_expand_mod=sample.eyebrows_expand_mod)
                        else:
                            mask = LandmarksProcessor.get_image_hull_mask(
                                img.shape, sample.landmarks)

                        if sample.ie_polys is not None:
                            sample.ie_polys.overlay_mask(mask)
                    ##################

                    if motion_blur is not None:
                        chance, mb_max_size = motion_blur
                        chance = np.clip(chance, 0, 100)

                        if np.random.randint(100) < chance:
                            img = imagelib.LinearMotionBlur(
                                img,
                                np.random.randint(mb_max_size) + 1,
                                np.random.randint(360))

                    if gaussian_blur is not None:
                        chance, kernel_max_size = gaussian_blur
                        chance = np.clip(chance, 0, 100)

                        if np.random.randint(100) < chance:
                            img = cv2.GaussianBlur(
                                img,
                                (np.random.randint(kernel_max_size) * 2 + 1, )
                                * 2, 0)

                    if is_face_sample and target_face_type != SPTF.NONE:
                        target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[
                            target_face_type]
                        if target_ft > sample.face_type:
                            raise Exception(
                                'sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.'
                                %
                                (sample.filename, sample.face_type, target_ft))

                        if sample.face_type == FaceType.MARK_ONLY:
                            #first warp to target facetype
                            img = cv2.warpAffine(
                                img,
                                LandmarksProcessor.get_transform_mat(
                                    sample.landmarks, sample.shape[0],
                                    target_ft),
                                (sample.shape[0], sample.shape[0]),
                                flags=cv2.INTER_CUBIC)
                            mask = cv2.warpAffine(
                                mask,
                                LandmarksProcessor.get_transform_mat(
                                    sample.landmarks, sample.shape[0],
                                    target_ft),
                                (sample.shape[0], sample.shape[0]),
                                flags=cv2.INTER_CUBIC)
                            #then apply transforms
                            img, mask = do_transform(img, mask)
                            img = np.concatenate((img, mask), -1)
                            img = cv2.resize(img, (resolution, resolution),
                                             cv2.INTER_CUBIC)
                        else:
                            img, mask = do_transform(img, mask)

                            mat = LandmarksProcessor.get_transform_mat(
                                sample.landmarks, resolution, target_ft)
                            img = cv2.warpAffine(
                                img,
                                mat, (resolution, resolution),
                                borderMode=(cv2.BORDER_REPLICATE
                                            if border_replicate else
                                            cv2.BORDER_CONSTANT),
                                flags=cv2.INTER_CUBIC)
                            mask = cv2.warpAffine(
                                mask,
                                mat, (resolution, resolution),
                                borderMode=cv2.BORDER_CONSTANT,
                                flags=cv2.INTER_CUBIC)
                            img = np.concatenate((img, mask[..., None]), -1)

                    else:
                        img, mask = do_transform(img, mask)
                        img = np.concatenate((img, mask), -1)
                        img = cv2.resize(img, (resolution, resolution),
                                         cv2.INTER_CUBIC)

                    if random_sub_res != 0:
                        sub_size = resolution - random_sub_res
                        rnd_state = np.random.RandomState(sample_rnd_seed +
                                                          random_sub_res)
                        start_x = rnd_state.randint(sub_size + 1)
                        start_y = rnd_state.randint(sub_size + 1)
                        img = img[start_y:start_y + sub_size,
                                  start_x:start_x + sub_size, :]

                    img = np.clip(img, 0, 1).astype(np.float32)
                    img_bgr = img[..., 0:3]
                    img_mask = img[..., 3:4]

                    if ct_mode is not None and ct_sample is not None:
                        if ct_sample_bgr is None:
                            ct_sample_bgr = ct_sample.load_bgr()

                        ct_sample_bgr_resized = cv2.resize(
                            ct_sample_bgr, (resolution, resolution),
                            cv2.INTER_LINEAR)

                        if ct_mode == 'lct':
                            img_bgr = imagelib.linear_color_transfer(
                                img_bgr, ct_sample_bgr_resized)
                            img_bgr = np.clip(img_bgr, 0.0, 1.0)
                        elif ct_mode == 'rct':
                            img_bgr = imagelib.reinhard_color_transfer(
                                np.clip((img_bgr * 255).astype(np.uint8), 0,
                                        255),
                                np.clip((ct_sample_bgr_resized * 255).astype(
                                    np.uint8), 0, 255))
                            img_bgr = np.clip(
                                img_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                        elif ct_mode == 'mkl':
                            img_bgr = imagelib.color_transfer_mkl(
                                img_bgr, ct_sample_bgr_resized)
                        elif ct_mode == 'idt':
                            img_bgr = imagelib.color_transfer_idt(
                                img_bgr, ct_sample_bgr_resized)
                        elif ct_mode == 'sot':
                            img_bgr = imagelib.color_transfer_sot(
                                img_bgr, ct_sample_bgr_resized)
                            img_bgr = np.clip(img_bgr, 0.0, 1.0)

                    if normalize_std_dev:
                        img_bgr = (img_bgr - img_bgr.mean(
                            (0, 1))) / img_bgr.std((0, 1))
                    elif normalize_vgg:
                        img_bgr = np.clip(img_bgr * 255, 0, 255)
                        img_bgr[:, :, 0] -= 103.939
                        img_bgr[:, :, 1] -= 116.779
                        img_bgr[:, :, 2] -= 123.68

                    if mode_type == SPTF.MODE_BGR:
                        img = img_bgr
                    elif mode_type == SPTF.MODE_BGR_SHUFFLE:
                        rnd_state = np.random.RandomState(sample_rnd_seed)
                        img = np.take(img_bgr,
                                      rnd_state.permutation(img_bgr.shape[-1]),
                                      axis=-1)

                    elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT:
                        rnd_state = np.random.RandomState(sample_rnd_seed)
                        hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)
                        h, s, v = cv2.split(hsv)
                        h = (h + rnd_state.randint(360)) % 360
                        s = np.clip(s + rnd_state.random() - 0.5, 0, 1)
                        v = np.clip(v + rnd_state.random() - 0.5, 0, 1)
                        hsv = cv2.merge([h, s, v])
                        img = np.clip(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), 0,
                                      1)
                    elif mode_type == SPTF.MODE_G:
                        img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY)[...,
                                                                        None]
                    elif mode_type == SPTF.MODE_GGG:
                        img = np.repeat(
                            np.expand_dims(
                                cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY), -1),
                            (3, ), -1)
                    elif mode_type == SPTF.MODE_M and is_face_sample:
                        img = img_mask

                    if not debug:
                        if normalize_tanh:
                            img = np.clip(img * 2.0 - 1.0, -1.0, 1.0)
                        else:
                            img = np.clip(img, 0.0, 1.0)

                    if data_format == "NCHW":
                        img = np.transpose(img, (2, 0, 1))

                outputs_sample.append(img)
            outputs += [outputs_sample]

        return outputs
Esempio n. 8
0
def MergeMaskedFace(predictor_func, predictor_input_shape, face_enhancer_func,
                    xseg_256_extract_func, cfg, frame_info, img_bgr_uint8,
                    img_bgr, img_face_landmarks):
    img_size = img_bgr.shape[1], img_bgr.shape[0]
    img_face_mask_a = LandmarksProcessor.get_image_hull_mask(
        img_bgr.shape, img_face_landmarks)

    out_img = img_bgr.copy()
    out_merging_mask_a = None

    input_size = predictor_input_shape[0]
    mask_subres_size = input_size * 4
    output_size = input_size
    if cfg.super_resolution_power != 0:
        output_size *= 4

    face_mat = LandmarksProcessor.get_transform_mat(img_face_landmarks,
                                                    output_size,
                                                    face_type=cfg.face_type)
    face_output_mat = LandmarksProcessor.get_transform_mat(
        img_face_landmarks,
        output_size,
        face_type=cfg.face_type,
        scale=1.0 + 0.01 * cfg.output_face_scale)

    if mask_subres_size == output_size:
        face_mask_output_mat = face_output_mat
    else:
        face_mask_output_mat = LandmarksProcessor.get_transform_mat(
            img_face_landmarks,
            mask_subres_size,
            face_type=cfg.face_type,
            scale=1.0 + 0.01 * cfg.output_face_scale)

    dst_face_bgr = cv2.warpAffine(img_bgr,
                                  face_mat, (output_size, output_size),
                                  flags=cv2.INTER_CUBIC)
    dst_face_bgr = np.clip(dst_face_bgr, 0, 1)

    dst_face_mask_a_0 = cv2.warpAffine(img_face_mask_a,
                                       face_mat, (output_size, output_size),
                                       flags=cv2.INTER_CUBIC)
    dst_face_mask_a_0 = np.clip(dst_face_mask_a_0, 0, 1)

    predictor_input_bgr = cv2.resize(dst_face_bgr, (input_size, input_size))

    predicted = predictor_func(predictor_input_bgr)
    prd_face_bgr = np.clip(predicted[0], 0, 1.0)
    prd_face_mask_a_0 = np.clip(predicted[1], 0, 1.0)
    prd_face_dst_mask_a_0 = np.clip(predicted[2], 0, 1.0)

    if cfg.super_resolution_power != 0:
        prd_face_bgr_enhanced = face_enhancer_func(prd_face_bgr,
                                                   is_tanh=True,
                                                   preserve_size=False)
        mod = cfg.super_resolution_power / 100.0
        prd_face_bgr = cv2.resize(prd_face_bgr, (output_size, output_size)) * (
            1.0 - mod) + prd_face_bgr_enhanced * mod
        prd_face_bgr = np.clip(prd_face_bgr, 0, 1)

    if cfg.super_resolution_power != 0:
        prd_face_mask_a_0 = cv2.resize(prd_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)
        prd_face_dst_mask_a_0 = cv2.resize(prd_face_dst_mask_a_0,
                                           (output_size, output_size),
                                           cv2.INTER_CUBIC)

    if cfg.mask_mode == 1:  #dst
        wrk_face_mask_a_0 = cv2.resize(dst_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)
    elif cfg.mask_mode == 2:  #learned-prd
        wrk_face_mask_a_0 = prd_face_mask_a_0
    elif cfg.mask_mode == 3:  #learned-dst
        wrk_face_mask_a_0 = prd_face_dst_mask_a_0
    elif cfg.mask_mode == 4:  #learned-prd*learned-dst
        wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0
    elif cfg.mask_mode == 5:  #learned-prd+learned-dst
        wrk_face_mask_a_0 = np.clip(prd_face_mask_a_0 + prd_face_dst_mask_a_0,
                                    0, 1)
    elif cfg.mask_mode >= 6 and cfg.mask_mode <= 9:  #XSeg modes
        if cfg.mask_mode == 6 or cfg.mask_mode == 8 or cfg.mask_mode == 9:
            # obtain XSeg-prd
            prd_face_xseg_bgr = cv2.resize(prd_face_bgr,
                                           (xseg_input_size, ) * 2,
                                           cv2.INTER_CUBIC)
            prd_face_xseg_mask = xseg_256_extract_func(prd_face_xseg_bgr)
            X_prd_face_mask_a_0 = cv2.resize(prd_face_xseg_mask,
                                             (output_size, output_size),
                                             cv2.INTER_CUBIC)

        if cfg.mask_mode >= 7 and cfg.mask_mode <= 9:
            # obtain XSeg-dst
            xseg_mat = LandmarksProcessor.get_transform_mat(
                img_face_landmarks, xseg_input_size, face_type=cfg.face_type)
            dst_face_xseg_bgr = cv2.warpAffine(img_bgr,
                                               xseg_mat,
                                               (xseg_input_size, ) * 2,
                                               flags=cv2.INTER_CUBIC)
            dst_face_xseg_mask = xseg_256_extract_func(dst_face_xseg_bgr)
            X_dst_face_mask_a_0 = cv2.resize(dst_face_xseg_mask,
                                             (output_size, output_size),
                                             cv2.INTER_CUBIC)

        if cfg.mask_mode == 6:  #'XSeg-prd'
            wrk_face_mask_a_0 = X_prd_face_mask_a_0
        elif cfg.mask_mode == 7:  #'XSeg-dst'
            wrk_face_mask_a_0 = X_dst_face_mask_a_0
        elif cfg.mask_mode == 8:  #'XSeg-prd*XSeg-dst'
            wrk_face_mask_a_0 = X_prd_face_mask_a_0 * X_dst_face_mask_a_0
        elif cfg.mask_mode == 9:  #learned-prd*learned-dst*XSeg-prd*XSeg-dst
            wrk_face_mask_a_0 = prd_face_mask_a_0 * prd_face_dst_mask_a_0 * X_prd_face_mask_a_0 * X_dst_face_mask_a_0

    wrk_face_mask_a_0[wrk_face_mask_a_0 < (1.0 /
                                           255.0)] = 0.0  # get rid of noise

    # resize to mask_subres_size
    if wrk_face_mask_a_0.shape[0] != mask_subres_size:
        wrk_face_mask_a_0 = cv2.resize(wrk_face_mask_a_0,
                                       (mask_subres_size, mask_subres_size),
                                       cv2.INTER_CUBIC)

    # process mask in local predicted space
    if 'raw' not in cfg.mode:
        # add zero pad
        wrk_face_mask_a_0 = np.pad(wrk_face_mask_a_0, input_size)

        ero = cfg.erode_mask_modifier
        blur = cfg.blur_mask_modifier

        if ero > 0:
            wrk_face_mask_a_0 = cv2.erode(wrk_face_mask_a_0,
                                          cv2.getStructuringElement(
                                              cv2.MORPH_ELLIPSE, (ero, ero)),
                                          iterations=1)
        elif ero < 0:
            wrk_face_mask_a_0 = cv2.dilate(wrk_face_mask_a_0,
                                           cv2.getStructuringElement(
                                               cv2.MORPH_ELLIPSE,
                                               (-ero, -ero)),
                                           iterations=1)

        # clip eroded/dilated mask in actual predict area
        # pad with half blur size in order to accuratelly fade to zero at the boundary
        clip_size = input_size + blur // 2

        wrk_face_mask_a_0[:clip_size, :] = 0
        wrk_face_mask_a_0[-clip_size:, :] = 0
        wrk_face_mask_a_0[:, :clip_size] = 0
        wrk_face_mask_a_0[:, -clip_size:] = 0

        if blur > 0:
            blur = blur + (1 - blur % 2)
            wrk_face_mask_a_0 = cv2.GaussianBlur(wrk_face_mask_a_0,
                                                 (blur, blur), 0)

        wrk_face_mask_a_0 = wrk_face_mask_a_0[input_size:-input_size,
                                              input_size:-input_size]

        wrk_face_mask_a_0 = np.clip(wrk_face_mask_a_0, 0, 1)

    img_face_mask_a = cv2.warpAffine(wrk_face_mask_a_0,
                                     face_mask_output_mat,
                                     img_size,
                                     np.zeros(img_bgr.shape[0:2],
                                              dtype=np.float32),
                                     flags=cv2.WARP_INVERSE_MAP
                                     | cv2.INTER_CUBIC)[..., None]
    img_face_mask_a = np.clip(img_face_mask_a, 0.0, 1.0)

    img_face_mask_a[img_face_mask_a < (1.0 / 255.0)] = 0.0  # get rid of noise

    if wrk_face_mask_a_0.shape[0] != output_size:
        wrk_face_mask_a_0 = cv2.resize(wrk_face_mask_a_0,
                                       (output_size, output_size),
                                       cv2.INTER_CUBIC)

    wrk_face_mask_a = wrk_face_mask_a_0[..., None]
    wrk_face_mask_area_a = wrk_face_mask_a.copy()
    wrk_face_mask_area_a[wrk_face_mask_area_a > 0] = 1.0

    if cfg.mode == 'original':
        return img_bgr, img_face_mask_a

    elif 'raw' in cfg.mode:
        if cfg.mode == 'raw-rgb':
            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_merging_mask_a = img_face_mask_a

        elif cfg.mode == 'raw-predict':
            out_img = prd_face_bgr
            out_merging_mask_a = wrk_face_mask_a

        out_img = np.clip(out_img, 0.0, 1.0)
    else:
        #averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
        ar = []
        for i in range(1, 10):
            maxregion = np.argwhere(img_face_mask_a > i / 10.0)
            if maxregion.size != 0:
                miny, minx = maxregion.min(axis=0)[:2]
                maxy, maxx = maxregion.max(axis=0)[:2]
                lenx = maxx - minx
                leny = maxy - miny
                if min(lenx, leny) >= 4:
                    ar += [[lenx, leny]]

        if len(ar) > 0:

            if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
                if cfg.color_transfer_mode == 1:  #rct
                    prd_face_bgr = imagelib.reinhard_color_transfer(
                        np.clip(prd_face_bgr * wrk_face_mask_area_a * 255, 0,
                                255).astype(np.uint8),
                        np.clip(dst_face_bgr * wrk_face_mask_area_a * 255, 0,
                                255).astype(np.uint8),
                    )

                    prd_face_bgr = np.clip(
                        prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                elif cfg.color_transfer_mode == 2:  #lct
                    prd_face_bgr = imagelib.linear_color_transfer(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 3:  #mkl
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 4:  #mkl-m
                    prd_face_bgr = imagelib.color_transfer_mkl(
                        prd_face_bgr * wrk_face_mask_area_a,
                        dst_face_bgr * wrk_face_mask_area_a)
                elif cfg.color_transfer_mode == 5:  #idt
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr, dst_face_bgr)
                elif cfg.color_transfer_mode == 6:  #idt-m
                    prd_face_bgr = imagelib.color_transfer_idt(
                        prd_face_bgr * wrk_face_mask_area_a,
                        dst_face_bgr * wrk_face_mask_area_a)
                elif cfg.color_transfer_mode == 7:  #sot-m
                    prd_face_bgr = imagelib.color_transfer_sot(
                        prd_face_bgr * wrk_face_mask_area_a,
                        dst_face_bgr * wrk_face_mask_area_a,
                        steps=10,
                        batch_size=30)
                    prd_face_bgr = np.clip(prd_face_bgr, 0.0, 1.0)
                elif cfg.color_transfer_mode == 8:  #mix-m
                    prd_face_bgr = imagelib.color_transfer_mix(
                        prd_face_bgr * wrk_face_mask_area_a,
                        dst_face_bgr * wrk_face_mask_area_a)

            if cfg.mode == 'hist-match':
                hist_mask_a = np.ones(prd_face_bgr.shape[:2] + (1, ),
                                      dtype=np.float32)

                if cfg.masked_hist_match:
                    hist_mask_a *= wrk_face_mask_area_a

                white = (1.0 - hist_mask_a) * np.ones(
                    prd_face_bgr.shape[:2] + (1, ), dtype=np.float32)

                hist_match_1 = prd_face_bgr * hist_mask_a + white
                hist_match_1[hist_match_1 > 1.0] = 1.0

                hist_match_2 = dst_face_bgr * hist_mask_a + white
                hist_match_2[hist_match_1 > 1.0] = 1.0

                prd_face_bgr = imagelib.color_hist_match(
                    hist_match_1, hist_match_2,
                    cfg.hist_match_threshold).astype(dtype=np.float32)

            if 'seamless' in cfg.mode:
                #mask used for cv2.seamlessClone
                img_face_seamless_mask_a = None
                for i in range(1, 10):
                    a = img_face_mask_a > i / 10.0
                    if len(np.argwhere(a)) == 0:
                        continue
                    img_face_seamless_mask_a = img_face_mask_a.copy()
                    img_face_seamless_mask_a[a] = 1.0
                    img_face_seamless_mask_a[img_face_seamless_mask_a <= i /
                                             10.0] = 0.0
                    break

            out_img = cv2.warpAffine(prd_face_bgr, face_output_mat, img_size,
                                     out_img,
                                     cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                                     cv2.BORDER_TRANSPARENT)
            out_img = np.clip(out_img, 0.0, 1.0)

            if 'seamless' in cfg.mode:
                try:
                    #calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
                    l, t, w, h = cv2.boundingRect(
                        (img_face_seamless_mask_a * 255).astype(np.uint8))
                    s_maskx, s_masky = int(l + w / 2), int(t + h / 2)
                    out_img = cv2.seamlessClone(
                        (out_img * 255).astype(np.uint8), img_bgr_uint8,
                        (img_face_seamless_mask_a * 255).astype(np.uint8),
                        (s_maskx, s_masky), cv2.NORMAL_CLONE)
                    out_img = out_img.astype(dtype=np.float32) / 255.0
                except Exception as e:
                    #seamlessClone may fail in some cases
                    e_str = traceback.format_exc()

                    if 'MemoryError' in e_str:
                        raise Exception(
                            "Seamless fail: " + e_str
                        )  #reraise MemoryError in order to reprocess this data by other processes
                    else:
                        print("Seamless fail: " + e_str)

            cfg_mp = 0.3  #todo cfg.motion_blur_power / 100.0

            ###
            shrink_res = output_size  #512

            shrink_prd_face_dst_mask_a_0 = cv2.resize(prd_face_dst_mask_a_0,
                                                      (shrink_res, shrink_res),
                                                      cv2.INTER_CUBIC)

            shrink_blur_size = (shrink_res // 32) + 1
            shrink_blur_size += (1 - shrink_blur_size % 2)

            # Feather the mask
            shrink_prd_face_dst_mask_a_0 = cv2.GaussianBlur(
                shrink_prd_face_dst_mask_a_0,
                (shrink_blur_size, shrink_blur_size), 0)
            shrink_prd_face_dst_mask_a_0[
                shrink_prd_face_dst_mask_a_0 < 0.5] = 0.0
            shrink_prd_face_dst_mask_a_0[
                shrink_prd_face_dst_mask_a_0 >= 0.5] = 1.0

            cnts = cv2.findContours(
                shrink_prd_face_dst_mask_a_0.astype(np.uint8), cv2.RETR_LIST,
                cv2.CHAIN_APPROX_TC89_KCOS)
            # Get the largest found contour
            cnt = sorted(cnts[0], key=cv2.contourArea,
                         reverse=True)[0].squeeze()
            l, t = cnt.min(0)
            r, b = cnt.max(0)
            min_dist_to_edge = min(l, t, r, b)

            center = np.mean(cnt, 0)
            cnt2 = cnt.copy().astype(np.float32)
            cnt2_c = center - cnt2
            cnt2_len = npla.norm(cnt2_c, axis=1, keepdims=True)
            cnt2_vec = cnt2_c / cnt2_len
            # Anchor perimeter
            pts_count = shrink_res // 2

            h = shrink_res
            w = shrink_res
            perim_pts = np.concatenate(
                (np.concatenate([
                    np.arange(0, w + w / pts_count, w / pts_count)[..., None],
                    np.array([[0]] * (pts_count + 1))
                ],
                                axis=-1),
                 np.concatenate([
                     np.arange(0, w + w / pts_count, w / pts_count)[..., None],
                     np.array([[h]] * (pts_count + 1))
                 ],
                                axis=-1),
                 np.concatenate([
                     np.array([[0]] * (pts_count + 1)),
                     np.arange(0, h + h / pts_count, h / pts_count)[..., None]
                 ],
                                axis=-1),
                 np.concatenate([
                     np.array([[w]] * (pts_count + 1)),
                     np.arange(0, h + h / pts_count, h / pts_count)[..., None]
                 ],
                                axis=-1)), 0).astype(np.int32)

            cnt2 += cnt2_vec * cnt2_len * cfg_mp  #todo

            cnt2 = cnt2.astype(np.int32)
            cnt2 = np.concatenate((cnt2, perim_pts), 0)
            cnt = np.concatenate((cnt, perim_pts), 0)

            shrink_face_mat = LandmarksProcessor.get_transform_mat(
                img_face_landmarks, shrink_res,
                face_type=cfg.face_type)  #todo check face type
            shrink_dst_face_bgr = cv2.warpAffine(img_bgr,
                                                 shrink_face_mat,
                                                 (shrink_res, shrink_res),
                                                 flags=cv2.INTER_CUBIC)

            shrinked_dst_face_bgr = mls_rigid_deformation_inv(
                shrink_dst_face_bgr, cnt, cnt2)

            new_img_bgr = cv2.warpAffine(
                shrinked_dst_face_bgr, shrink_face_mat, img_size,
                img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                cv2.BORDER_TRANSPARENT)

            shrink_ero_size = int(min_dist_to_edge * 0.9)  #todo
            shrink_ero_size += (1 - shrink_ero_size % 2)
            shrink_blur_size = int(shrink_ero_size * 1.5)
            shrink_blur_size += (1 - shrink_blur_size % 2)

            if shrink_ero_size != 0:
                shrink_prd_face_dst_mask_a_0_before = shrink_prd_face_dst_mask_a_0.copy(
                )
                shrink_prd_face_dst_mask_a_0 = cv2.dilate(
                    shrink_prd_face_dst_mask_a_0,
                    cv2.getStructuringElement(
                        cv2.MORPH_ELLIPSE, (shrink_ero_size, shrink_ero_size)),
                    iterations=1)
                shrink_prd_face_dst_mask_a_0 = cv2.GaussianBlur(
                    shrink_prd_face_dst_mask_a_0,
                    (shrink_blur_size, shrink_blur_size), 0)

                #while True:
                #    cv2.imshow("", (shrink_prd_face_dst_mask_a_0_before*255).astype(np.uint8) )
                #    cv2.waitKey(0)
                #    cv2.imshow("", (shrink_prd_face_dst_mask_a_0*255).astype(np.uint8) )
                #    cv2.waitKey(0)

            shrink_img_mask = cv2.warpAffine(
                shrink_prd_face_dst_mask_a_0, shrink_face_mat, img_size,
                img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                cv2.BORDER_TRANSPARENT)
            shrink_img_mask_a = shrink_img_mask[..., None]

            new_img_bgr = img_bgr * (1 - shrink_img_mask_a) + (
                new_img_bgr * shrink_img_mask_a)

            #cv2.imshow("", (shrink_dst_face_bgr*255).astype(np.uint8) )
            #cv2.waitKey(0)
            #cv2.imshow("", (shrinked_dst_face_bgr*255).astype(np.uint8) )
            #cv2.waitKey(0)

            while True:
                cv2.imshow("", (img_bgr * 255).astype(np.uint8))
                cv2.waitKey(0)
                cv2.imshow("", (new_img_bgr * 255).astype(np.uint8))
                cv2.waitKey(0)
                #cv2.imshow("", (shrink_img_mask*255).astype(np.uint8) )
                #cv2.waitKey(0)

            ###

            out_img = img_bgr * (1 - img_face_mask_a) + (out_img *
                                                         img_face_mask_a)



            if ('seamless' in cfg.mode and cfg.color_transfer_mode != 0) or \
               cfg.mode == 'seamless-hist-match' or \
               cfg_mp != 0 or \
               cfg.blursharpen_amount != 0 or \
               cfg.image_denoise_power != 0 or \
               cfg.bicubic_degrade_power != 0:

                out_face_bgr = cv2.warpAffine(out_img,
                                              face_mat,
                                              (output_size, output_size),
                                              flags=cv2.INTER_CUBIC)

                if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
                    if cfg.color_transfer_mode == 1:
                        out_face_bgr = imagelib.reinhard_color_transfer(
                            np.clip(out_face_bgr * wrk_face_mask_area_a * 255,
                                    0, 255).astype(np.uint8),
                            np.clip(dst_face_bgr * wrk_face_mask_area_a * 255,
                                    0, 255).astype(np.uint8))
                        out_face_bgr = np.clip(
                            out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
                    elif cfg.color_transfer_mode == 2:  #lct
                        out_face_bgr = imagelib.linear_color_transfer(
                            out_face_bgr, dst_face_bgr)
                    elif cfg.color_transfer_mode == 3:  #mkl
                        out_face_bgr = imagelib.color_transfer_mkl(
                            out_face_bgr, dst_face_bgr)
                    elif cfg.color_transfer_mode == 4:  #mkl-m
                        out_face_bgr = imagelib.color_transfer_mkl(
                            out_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a)
                    elif cfg.color_transfer_mode == 5:  #idt
                        out_face_bgr = imagelib.color_transfer_idt(
                            out_face_bgr, dst_face_bgr)
                    elif cfg.color_transfer_mode == 6:  #idt-m
                        out_face_bgr = imagelib.color_transfer_idt(
                            out_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a)
                    elif cfg.color_transfer_mode == 7:  #sot-m
                        out_face_bgr = imagelib.color_transfer_sot(
                            out_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a,
                            steps=10,
                            batch_size=30)
                        out_face_bgr = np.clip(out_face_bgr, 0.0, 1.0)
                    elif cfg.color_transfer_mode == 8:  #mix-m
                        out_face_bgr = imagelib.color_transfer_mix(
                            out_face_bgr * wrk_face_mask_area_a,
                            dst_face_bgr * wrk_face_mask_area_a)

                if cfg.mode == 'seamless-hist-match':
                    out_face_bgr = imagelib.color_hist_match(
                        out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)

                if cfg_mp != 0:
                    k_size = int(frame_info.motion_power * cfg_mp)
                    if k_size >= 1:
                        k_size = np.clip(k_size + 1, 2, 50)
                        if cfg.super_resolution_power != 0:
                            k_size *= 2
                        out_face_bgr = imagelib.LinearMotionBlur(
                            out_face_bgr, k_size, frame_info.motion_deg)

                if cfg.blursharpen_amount != 0:
                    out_face_bgr = imagelib.blursharpen(
                        out_face_bgr, cfg.sharpen_mode, 3,
                        cfg.blursharpen_amount)

                if cfg.image_denoise_power != 0:
                    n = cfg.image_denoise_power
                    while n > 0:
                        img_bgr_denoised = cv2.medianBlur(img_bgr, 5)
                        if int(n / 100) != 0:
                            img_bgr = img_bgr_denoised
                        else:
                            pass_power = (n % 100) / 100.0
                            img_bgr = img_bgr * (
                                1.0 -
                                pass_power) + img_bgr_denoised * pass_power
                        n = max(n - 10, 0)

                if cfg.bicubic_degrade_power != 0:
                    p = 1.0 - cfg.bicubic_degrade_power / 101.0
                    img_bgr_downscaled = cv2.resize(
                        img_bgr, (int(img_size[0] * p), int(img_size[1] * p)),
                        cv2.INTER_CUBIC)
                    img_bgr = cv2.resize(img_bgr_downscaled, img_size,
                                         cv2.INTER_CUBIC)

                new_out = cv2.warpAffine(
                    out_face_bgr, face_mat, img_size, img_bgr.copy(),
                    cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC,
                    cv2.BORDER_TRANSPARENT)
                out_img = np.clip(
                    img_bgr * (1 - img_face_mask_a) +
                    (new_out * img_face_mask_a), 0, 1.0)

            if cfg.color_degrade_power != 0:
                out_img_reduced = imagelib.reduce_colors(out_img, 256)
                if cfg.color_degrade_power == 100:
                    out_img = out_img_reduced
                else:
                    alpha = cfg.color_degrade_power / 100.0
                    out_img = (out_img * (1.0 - alpha) +
                               out_img_reduced * alpha)

        out_merging_mask_a = img_face_mask_a

    return out_img, out_merging_mask_a