Esempio n. 1
0
 def __init__(
     self,
     architecture: CompiledArchitecture,
     data: DataSetSplit,
     epochs: int,
     patience: int,
 ) -> None:
     """
     # Arguments
     epochs:
     - 0 for automatically stopping when training yields no improvements for a specified number of epochs
     - any positive integer for a set number of epochs
     """
     self._architecture: CompiledArchitecture = architecture
     self._data: DataSetSplit = data
     self._names: ModelSplitName = ModelSplitName(
         architecture.name(),
         data.name(),
         epochs,
         patience,
     )
     self._kmodel: keras.models.Model = None
     self._total_epochs: int = epochs
     self._patience: int = patience
     self._is_best: bool = False
     self._status: TrainingStatusData = None
     self._res = Resolution(190)
     self._batch = 10
Esempio n. 2
0
 def create(self, res: Resolution, classes: Optional[int]) -> Model:
     """
     Creates a keras.models.Model object.
     """
     if type(classes) is not int:
         raise ValueError(classes)
     return VGG16(
         include_top=True,
         weights=None,
         input_tensor=Input(res.hwc()),
         classes=classes,
     )
Esempio n. 3
0
 def create(self, res: Resolution, classes: Optional[int]) -> Model:
     """
     Creates a keras.models.Model object.
     """
     img_input = Input(res.hwc())
     x = ResNet101(
         include_top=True,
         weights=None,
         input_tensor=img_input,
     )
     x = Dense(1, activation='relu', name='predictions')(x.output)
     model = Model(img_input, x, name='resnet101a')
     return model
Esempio n. 4
0
 def create(self, res: Resolution, classes: Optional[int]) -> Model:
     """
     Creates a keras.models.Model object.
     """
     if type(classes) is not int:
         raise ValueError(classes)
     base = VGG16(
         include_top=False,
         weights='imagenet',
         input_shape=res.hwc(),
     )
     base.trainable = False
     x = Flatten(name='flatten')(base.output)
     x = Dense(4096, activation='relu', name='fc1')(x)
     x = Dense(4096, activation='relu', name='fc2')(x)
     x = Dense(classes, activation='softmax', name='predictions')(x)
     model = Model(base.input, x, name='vgg16pt')
     return model
Esempio n. 5
0
    def create(self, res: Resolution, classes: Optional[int]) -> Model:
        """
        Creates a keras.models.Model object.
        """
        if type(classes) is not int:
            raise ValueError(classes)
        img_input = Input(res.hwc())
        # Block 1
        x = Conv2D(64, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block1_conv1')(img_input)
        x = Conv2D(64, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block1_conv2')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

        # Block 2
        x = Conv2D(128, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block2_conv1')(x)
        x = Conv2D(128, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block2_conv2')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

        # Block 3
        x = Conv2D(256, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block3_conv1')(x)
        x = Conv2D(256, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block3_conv2')(x)
        x = Conv2D(256, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block3_conv3')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

        # Block 4
        x = Conv2D(512, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block4_conv1')(x)
        x = Conv2D(512, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block4_conv2')(x)
        x = Conv2D(512, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block4_conv3')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

        # Block 5
        x = Conv2D(512, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block5_conv1')(x)
        x = Conv2D(512, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block5_conv2')(x)
        x = Conv2D(512, (3, 3),
                   activation='relu',
                   padding='same',
                   name='block5_conv3')(x)
        x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
        model = Model(img_input, x, name='vgg16')
        return model
Esempio n. 6
0
    def create(self, res: Resolution, classes: Optional[int]) -> Model:
        """
        Returns a Keras Model object.
        """
        img_input = Input(res.hwc())

        # Block 1
        x = Conv2D(filters=96,
                   kernel_size=(11, 11),
                   strides=4,
                   activation='relu',
                   padding='same',
                   name='block1_conv1')(img_input)
        x = BatchNormalization()(x)
        x = MaxPooling2D((3, 3), strides=(2, 2), name='block1_pool')(x)

        # Block 2
        x = Conv2D(
            filters=256,
            kernel_size=(5, 5),
            # strides=4,
            activation='relu',
            padding='same',
            name='block2_conv1')(x)
        x = BatchNormalization()(x)
        x = MaxPooling2D((3, 3), strides=(2, 2), name='block2_pool')(x)

        # Block 3
        x = Conv2D(
            filters=384,
            kernel_size=(3, 3),
            # strides=4,
            activation='relu',
            padding='same',
            name='block3_conv1')(x)

        # Block 4
        x = Conv2D(
            filters=384,
            kernel_size=(3, 3),
            # strides=4,
            activation='relu',
            padding='same',
            name='block4_conv1')(x)

        # Block 5
        x = Conv2D(
            filters=256,
            kernel_size=(3, 3),
            # strides=4,
            activation='relu',
            padding='same',
            name='block5_conv1')(x)
        x = MaxPooling2D((3, 3), strides=(2, 2), name='block5_pool')(x)

        # Classification block
        x = Flatten(name='flatten')(x)
        x = Dense(4096, activation='relu', name='fc1')(x)
        x = Dense(4096, activation='relu', name='fc2')(x)
        x = Dense(classes, activation='softmax', name='predictions')(x)
        model = Model(img_input, x, name='smi13a')
        return model