def simulate_ahp(**kw): n = len(kw.get('ahp_curr')) I_vec = numpy.array(kw.get('ahp_curr')) simTime = 3000. # ms my_nest.ResetKernel({'local_num_threads': 1}) sd = {'active': True, 'params': {'to_memory': True, 'to_file': False}} mm = { 'active': True, 'params': { 'interval': 0.1, 'to_memory': True, 'to_file': False } } p = kw.get('rs_params') if 'type_id' in p.keys(): del p['type_id'] mnn = MyNetworkNode('dummy', model=kw.get('model'), n=n, params=p, mm=mm, sd=sd) my_nest.SetStatus(mnn[:], params={'I_e': kw.get('ahp_I_e')}) # Set I_e scg = my_nest.Create('step_current_generator', n=n) rec = my_nest.GetStatus(mnn[:])[0]['receptor_types'] for source, target, I in zip(scg, mnn[:], I_vec): my_nest.SetStatus([source], { 'amplitude_times': [500., 1000.], 'amplitude_values': [float(I), 0.] }) my_nest.Connect([source], [target], params={'receptor_type': rec['CURR']}) my_nest.MySimulate(simTime) signal = mnn.spike_signal.time_slice(700, 3000) delays = [] for i in range(n): # print signal.spiketrains[i+1.0].spike_times v = numpy.diff(signal.spiketrains[i + 1.0].spike_times) v = numpy.append(v, [0]) delays.append(max(v)) dg = Data_generic(**{ 'x': I_vec, 'y': delays, 'xlabel': 'Time (ms)', 'ylabel': 'Voltage (mV)' }) return {'ahp': dg}
def simulate_IF(**kw): I_vec_in = kw.get('if_I_vec') tStim = 700 + 1300 my_nest.ResetKernel({'local_num_threads': 1}) sd = { 'active': True, 'params': { 'to_memory': True, 'to_file': False, 'start': 500.0 } } # mm={'active':True, # 'params':{'interval':0.1,'to_memory':True,'to_file':False}} p = kw.get('if_params') if 'type_id' in p.keys(): del p['type_id'] mnn = MyNetworkNode('dummy', model=kw.get('model'), n=1, params=p, sd=sd) I_e0 = my_nest.GetStatus(mnn[:])[0]['I_e'] my_nest.SetStatus(mnn[:], params={'I_e': I_e0 + kw.get('I_E')}) # Set I_e I_vec_out, fIsi, mIsi, lIsi = mnn.run_IF(I_vec_in, tStim=tStim) d = { 'x': I_vec_out, 'first': 1000. / fIsi, 'mean': 1000. / mIsi, 'last': 1000. / lIsi, } return {'IF': Data_IF_curve(**d)}
def simulate_rebound_spike(**kw): n=len(kw.get('rs_curr')) simTime = 3000. # ms my_nest.ResetKernel({'local_num_threads':1}) sd={'active':True, 'params':{'to_memory':True,'to_file':False}} mm={'active':True, 'params':{'interval':0.1,'to_memory':True,'to_file':False}} p=kw.get('rs_params') if 'type_id' in p.keys(): del p['type_id'] mnn=MyNetworkNode('dummy',model=kw.get('model'), n=n, params=p, mm=mm, sd=sd) my_nest.SetStatus(mnn[:], params={'I_e':.5}) # Set I_e I_e = my_nest.GetStatus(mnn.ids,'I_e')[0] scg = my_nest.Create( 'step_current_generator',n=n ) rec=my_nest.GetStatus(mnn[:])[0]['receptor_types'] i=0 for t, c in zip(kw.get('rs_time'), kw.get('rs_curr')): my_nest.SetStatus([scg[i]], {'amplitude_times':[500.,t+500.], 'amplitude_values':[float(c),0.]}) my_nest.Connect( [scg[i]], [mnn[i]], params = { 'receptor_type' : rec['CURR'] } ) i+=1 my_nest.MySimulate(simTime) mnn.voltage_signal.my_set_spike_peak( 21, spkSignal= mnn.spike_signal ) d={} for i in range(n): voltage=mnn.voltage_signal.analog_signals[i+1].signal x=numpy.linspace(0,simTime, len(voltage)) dg=Data_generic(**{'x':x, 'y':voltage, 'xlabel':'Time (ms)', 'ylabel':'Voltage (mV)'}) misc.dict_update(d, {'rs_voltage_{0}'.format(i):dg}) rd=mnn.spike_signal.raw_data() dg=Data_scatter(**{'x':rd[:,0], 'y':rd[:,1], 'xlabel':'Time (ms)', 'ylabel':'Voltage (mV)'}) misc.dict_update(d, {'rs_scatter':dg}) return d
def simulate_IV(**kw): I_vec = kw.get('iv_I_vec') my_nest.ResetKernel({'local_num_threads': 1}) sd = { 'active': True, 'params': { 'to_memory': True, 'to_file': False, 'start': 500.0 } } mm = { 'active': True, 'params': { 'interval': 0.1, 'to_memory': True, 'to_file': False } } p = kw.get('iv_params') if 'type_id' in p.keys(): del p['type_id'] mnn = MyNetworkNode('dummy', model=kw.get('model'), n=1, params=p, mm=mm, sd=sd) I_e0 = my_nest.GetStatus(mnn[:])[0]['I_e'] my_nest.SetStatus(mnn[:], params={'I_e': I_e0 + kw.get('I_E')}) # Set I_e x, y = mnn.run_IV_I_clamp(I_vec) print x, y dg = Data_generic(**{ 'x': x, 'y': y, 'xlabel': 'Current (pA)', 'ylabel': 'Voltage (mV)' }) return {'IV': dg}
def simulate_irregular_firing(**kw): n = len(kw.get('irf_curr')) I_vec = numpy.array(kw.get('irf_curr')) simTime = 2000. # ms my_nest.ResetKernel({'local_num_threads': 1}) sd = {'active': True, 'params': {'to_memory': True, 'to_file': False}} mm = { 'active': True, 'params': { 'interval': 0.1, 'to_memory': True, 'to_file': False } } p = kw.get('rs_params') if 'type_id' in p.keys(): del p['type_id'] mnn = MyNetworkNode('dummy', model=kw.get('model'), n=n, params=p, mm=mm, sd=sd) I_e0 = my_nest.GetStatus(mnn.ids, 'I_e')[0] for i, I_e in enumerate(I_vec): my_nest.SetStatus([mnn[i]], params={'I_e': I_e + I_e0}) scg = my_nest.Create('step_current_generator', n=n) noise = my_nest.Create('noise_generator', params={'mean': 0., 'std': 10.}) rec = my_nest.GetStatus(mnn[:])[0]['receptor_types'] for source, target, I in zip(scg, mnn[:], I_vec): my_nest.SetStatus([source], { 'amplitude_times': [1., simTime], 'amplitude_values': [-5., float(I)] }) my_nest.Connect([source], [target], params={'receptor_type': rec['CURR']}) my_nest.Connect(noise, [target], params={'receptor_type': rec['CURR']}) my_nest.MySimulate(simTime) mnn.voltage_signal.my_set_spike_peak(21, spkSignal=mnn.spike_signal) d = {} for i in range(n): voltage = mnn.voltage_signal.analog_signals[i + 1].signal x = numpy.linspace(0, simTime, len(voltage)) dg = Data_generic(**{ 'x': x, 'y': voltage, 'xlabel': 'Time (ms)', 'ylabel': 'Voltage (mV)' }) misc.dict_update(d, {'irf_voltage_{0}'.format(i): dg}) # my_nest.MySimulate(simTime) # mnn.get_signal( 'v','V_m', stop=simTime ) # retrieve signal # mnn.get_signal( 's') # retrieve signal # mnn.signals['V_m'].my_set_spike_peak( 15, spkSignal= mnn.signals['spikes'] ) return d