Esempio n. 1
0
 def __init__(self, topN=4):
     super(attention_net, self).__init__()
     self.pretrained_model = resnet.resnet50(pretrained=True)
     self.pretrained_model.add_module('raw_fc',
                                      nn.Linear(512 * 4, LABEL_NUM))
     self.proposal_net = ProposalNet()
     self.topN = topN
     self.concat_net = nn.Linear(2048 * (CAT_NUM + 1), LABEL_NUM)
     self.partcls_net = nn.Linear(512 * 4, LABEL_NUM)
     _, edge_anchors, _ = generate_default_anchor_maps()
     self.pad_side = 224
     self.edge_anchors = (edge_anchors + 224).astype(np.int)
Esempio n. 2
0
 def __init__(self, topN=4):
     super(attention_net, self).__init__()
     self.pretrained_model = resnet.resnet50(pretrained=True)
     self.pretrained_model.avgpool = nn.AdaptiveAvgPool2d(1)
     self.pretrained_model.fc = nn.Linear(512 * 4, 200)
     self.proposal_net = ProposalNet()
     self.topN = topN
     self.concat_net = nn.Linear(2048 * (CAT_NUM + 1), 200)
     self.partcls_net = nn.Linear(512 * 4, 200)
     _, edge_anchors, _ = generate_default_anchor_maps()
     self.pad_side = 224
     self.edge_anchors = (edge_anchors + 224).astype(np.int)
Esempio n. 3
0
 def __init__(self, topN=4):
     super(attention_net, self).__init__()
     self.pretrained_model = resnet.resnet50(pretrained=True)
     self.pretrained_model.avgpool = nn.AdaptiveAvgPool2d(1)
     self.pretrained_model.fc = nn.Linear(512 * 4, NUM_CLASS)
     self.proposal_net = ProposalNet()
     self.topN = topN  # proposal number
     self.concat_net = nn.Linear(2048 * (CAT_NUM + 1), NUM_CLASS)
     self.partcls_net = nn.Linear(512 * 4, NUM_CLASS)
     #其中每行的4个值[公式]表示矩形左上角和右下角点坐标。9个矩形共有3种形状,3种长宽比
     _, edge_anchors, _ = generate_default_anchor_maps()
     self.pad_side = 224
     self.edge_anchors = (edge_anchors + 224).astype(np.int)
Esempio n. 4
0
 def __init__(self, topN=4):
     super(attention_net, self).__init__()
     # self.pretrained_model = densenet.densenet201(pretrained=True)
     self.pretrained_model = resnet.resnet50(pretrained=True)
     self.pretrained_model.avgpool = nn.AdaptiveAvgPool2d(
         1)  # 1 denotes the output size
     num_features = self.pretrained_model.num_features
     self.pretrained_model.fc = nn.Linear(
         num_features, NUM_CLS)  # in_features=512*4, out_features=200
     self.proposal_net = ProposalNet(num_features)
     self.topN = topN
     self.concat_net = nn.Linear(num_features * (CAT_NUM + 1), NUM_CLS)
     self.partcls_net = nn.Linear(num_features, NUM_CLS)
     _, edge_anchors, _ = generate_default_anchor_maps()
     self.pad_side = 224
     self.edge_anchors = (edge_anchors + 224).astype(np.int)
Esempio n. 5
0
    def __init__(self, topN=4, n_class=200):
        super(attention_net, self).__init__()
        self.n_class = n_class
        self.pretrained_model = resnet.resnet50(pretrained=True)
        self.pretrained_model.avgpool = nn.AdaptiveAvgPool2d(1)
        self.pretrained_model.fc = nn.Linear(512 * 4, self.n_class)
        self.proposal_net = ProposalNet()
        self.topN = topN
        self.concat_net = nn.Linear(2048 * (CAT_NUM + 1 + 1), self.n_class)
        self.partcls_net = nn.Linear(512 * 4, self.n_class)

        self.pad_side = 224
        _, edge_anchors_small, _ = generate_default_anchor_maps(
            setting='small')
        self.edge_anchors_small = (edge_anchors_small + 224).astype(np.int)
        _, edge_anchors_large, _ = generate_default_anchor_maps(
            setting='large')
        self.edge_anchors_large = (edge_anchors_large + 224).astype(np.int)
Esempio n. 6
0
 def __init__(self):
     self.pretrained_model = resnet.resnet50(pretrained=True)
     self.pretrained_model.avgpool = nn.AdaptiveAvgPool2d(1)
     self.pretrained_model.fc = nn.Linear(512 * 4, 200)
Esempio n. 7
0
trainset = dataset.CUB(root="./CUB_200_2011", is_train=True, data_len=None)
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=BATCH_SIZE,
                                          shuffle=True,
                                          num_workers=8,
                                          drop_last=False)

testset = dataset.CUB(root="./CUB_200_2011", is_train=False, data_len=None)
testloader = torch.utils.data.DataLoader(testset,
                                         batch_size=BATCH_SIZE,
                                         shuffle=False,
                                         num_workers=8,
                                         drop_last=False)

# define model
net = resnet.resnet50(pretrained=True)
net.avgpool = torch.nn.AdaptiveAvgPool2d(1)
net.fc = torch.nn.Linear(512 * 4, 200)

if resume:
    ckpt = torch.load(resume)
    net.load_State_dict(ckpt["net_state_dict"])
    start_epoch = ckpt["epoch"] + 1
creterion = torch.nn.CrossEntropyLoss()

# define optimizers
raw_parameters = list(net.parameters())
raw_optimizer = torch.optim.SGD(raw_parameters,
                                lr=LR,
                                momentum=0.9,
                                weight_decay=WD)