Esempio n. 1
0
def im_list_detections(model, roidb):
    """Generate RetinaNet detections on all images in an imdb."""
    _t = Timer()
    num_images = len(roidb)
    num_classes = cfg.MODEL.NUM_CLASSES
    all_boxes, _, _ = test_engine.empty_results(num_classes, num_images)
    # create anchors for each level
    anchors = create_cell_anchors()
    for i, entry in enumerate(roidb):
        im = cv2.imread(entry['image'])
        with c2_utils.NamedCudaScope(0):
            _t.tic()
            cls_boxes_i = im_detections(model, im, anchors)
            _t.toc()
        test_engine.extend_results(i, all_boxes, cls_boxes_i)
        logger.info('im_detections: {:d}/{:d} {:.3f}s'.format(
            i + 1, num_images, _t.average_time))
    return all_boxes
Esempio n. 2
0
def main(name_scope, gpu_dev, num_images, args):
    t=args.t
    model = initialize_model_from_cfg()
    num_classes = cfg.MODEL.NUM_CLASSES
    all_boxes, all_segms, all_keyps = empty_results(num_classes, num_images)
    temp_frame_folder = osp.join(args.out_path,args.vid_name + '_frames/',str(t))
    imgs = glob.glob(temp_frame_folder+'/*.jpg')
    for i in range(len(imgs)):
        if i%100==0:
          print('Processing Detection for Frame %d'%(i+1))
        im_ = cv2.imread(imgs[i])
        assert im_ is not None
        im_ = np.expand_dims(im_, 0)
        with core.NameScope(name_scope):
            with core.DeviceScope(gpu_dev):
                cls_boxes_i, cls_segms_i, cls_keyps_i = im_detect_all(
                    model, im_, None)                                        #TODO: Parallelize detection

        extend_results(i, all_boxes, cls_boxes_i)
        if cls_segms_i is not None:
            extend_results(i, all_segms, cls_segms_i)
        if cls_keyps_i is not None:
            extend_results(i, all_keyps, cls_keyps_i)

    det_name = args.vid_name + '_' + str(args.t) + '_detections.pkl'
    det_file = osp.join(args.out_path, det_name)
    robust_pickle_dump(dict(all_keyps=all_keyps),det_file)
    shutil.rmtree(osp.join(args.out_path, args.vid_name + '_frames'))
Esempio n. 3
0
    else:  # For subprocess call
        assert cfg.TEST.DATASETS, 'cfg.TEST.DATASETS shouldn\'t be empty'
    assert_and_infer_cfg()

    logger.info('Re-evaluation with config:')
    logger.info(pprint.pformat(cfg))

    with open(args.result_path, 'rb') as f:
        results = pickle.load(f)
        logger.info('Loading results from {}.'.format(args.result_path))
    all_boxes = results['all_boxes']

    dataset_name = cfg.TEST.DATASETS[0]
    dataset = JsonDataset(dataset_name)
    roidb = dataset.get_roidb()
    num_images = len(roidb)
    num_classes = cfg.MODEL.NUM_CLASSES + 1
    final_boxes = empty_results(num_classes, num_images)
    test_corloc = 'train' in dataset_name
    for i, entry in enumerate(roidb):
        boxes = all_boxes[entry['image']]
        if test_corloc:
            _, _, cls_boxes_i = box_results_for_corloc(boxes['scores'],
                                                       boxes['boxes'])
        else:
            _, _, cls_boxes_i = box_results_with_nms_and_limit(
                boxes['scores'], boxes['boxes'])
        extend_results(i, final_boxes, cls_boxes_i)
    results = task_evaluation.evaluate_all(dataset, final_boxes,
                                           args.output_dir, test_corloc)
Esempio n. 4
0
def main():
    """Main function"""
    if not torch.cuda.is_available():
        sys.exit("Need a CUDA device to run the code.")

    logger = utils.logging.setup_logging(__name__)
    args = parse_args()
    logger.info('Called with args:')
    logger.info(args)

    assert (torch.cuda.device_count() == 1) ^ bool(args.multi_gpu_testing)

    assert bool(args.load_ckpt) ^ bool(args.load_detectron), \
        'Exactly one of --load_ckpt and --load_detectron should be specified.'
    if args.output_dir is None:
        ckpt_path = args.load_ckpt if args.load_ckpt else args.load_detectron
        args.output_dir = os.path.join(
            os.path.dirname(os.path.dirname(ckpt_path)), 'test')
        logger.info('Automatically set output directory to %s', args.output_dir)
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
    
    if args.close_fpn:
        args.cfg_file = "configs/few_shot/e2e_mask_rcnn_R-50-C4_1x_{}.yaml".format(args.group)
    else:
        args.cfg_file = "configs/few_shot/e2e_mask_rcnn_R-50-FPN_1x_{}.yaml".format(args.group)
    
    if args.cfg_file is not None:
        merge_cfg_from_file(args.cfg_file)
    if args.set_cfgs is not None:
        merge_cfg_from_list(args.set_cfgs)

    cfg.VIS = args.vis
    cfg.SEEN = args.seen

    if args.close_co_atten:
        cfg.CO_ATTEN = False
    if args.close_relation_rcnn:
        cfg.RELATION_RCNN = False
        if not args.close_fpn:
            cfg.FAST_RCNN.ROI_BOX_HEAD = 'fast_rcnn_heads.roi_2mlp_head'
            cfg.MRCNN.ROI_MASK_HEAD = 'mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs'
        else:
            cfg.FAST_RCNN.ROI_BOX_HEAD = 'torchResNet.ResNet_roi_conv5_head'
            cfg.MRCNN.ROI_MASK_HEAD = 'mask_rcnn_heads.mask_rcnn_fcn_head_v0upshare'
    if args.deform_conv:
        cfg.MODEL.USE_DEFORM = True

    if args.dataset == "fis_cell":
        cfg.TEST.DATASETS = ('fis_cell_test',)
        cfg.MODEL.NUM_CLASSES = 2
    elif args.dataset == "coco2017":
        cfg.TEST.DATASETS = ('coco_2017_val',)
        cfg.MODEL.NUM_CLASSES = 81
    elif args.dataset == "keypoints_coco2017":
        cfg.TEST.DATASETS = ('keypoints_coco_2017_val',)
        cfg.MODEL.NUM_CLASSES = 2
    else:  # For subprocess call
        assert cfg.TEST.DATASETS, 'cfg.TEST.DATASETS shouldn\'t be empty'
    assert_and_infer_cfg()

    #logger.info('Testing with config:')
    #logger.info(pprint.pformat(cfg))

    # manually set args.cuda
    args.cuda = True

    timer_for_ds = defaultdict(Timer)

    ### Dataset ###
    timer_for_ds['roidb'].tic()
    imdb, roidb, ratio_list, ratio_index, query, cat_list = combined_roidb(
        cfg.TEST.DATASETS, False)
    timer_for_ds['roidb'].toc()
    roidb_size = len(roidb)
    logger.info('{:d} roidb entries'.format(roidb_size))
    logger.info('Takes %.2f sec(s) to construct roidb', timer_for_ds['roidb'].average_time)

    batchSampler = BatchSampler(
        sampler=MinibatchSampler(ratio_list, ratio_index, shuffle=False),
        batch_size=1,
        drop_last=False
    )
    dataset = RoiDataLoader(
        roidb, ratio_list, ratio_index, query, 
        cfg.MODEL.NUM_CLASSES,
        training=False, cat_list=cat_list, shot=args.checkshot)
    
    ### Model ###
    model = initialize_model_from_cfg(args, gpu_id=0)

    all_results = OrderedDict({
        'box':
        OrderedDict(
            [
                ('AP', []),
                ('AP50', []),
                ('AP75', []),
                ('APs', []),
                ('APm', []),
                ('APl', []),
            ]
        ),
        'mask':
        OrderedDict(
            [
                ('AP', []),
                ('AP50', []),
                ('AP75', []),
                ('APs', []),
                ('APm', []),
                ('APl', []),
            ]
        )
    })
    timer_for_total = defaultdict(Timer)
    timer_for_total['total_test_time'].tic()
    for avg in range(args.average):
        dataset.query_position = avg
        dataloader = torch.utils.data.DataLoader(
            dataset, 
            batch_sampler=batchSampler, 
            num_workers=cfg.DATA_LOADER.NUM_THREADS,
            collate_fn=collate_minibatch
        )
        dataiterator = iter(dataloader)

        num_images = len(ratio_index)
        num_cats = imdb.num_classes
        all_boxes, all_segms, all_keyps = empty_results(num_cats, num_images)
        
        # total quantity of testing images
        num_detect = len(ratio_index)

        timers = defaultdict(Timer)
        post_fix = '%dshot_g%d_seen%d_%d'%(args.checkshot, args.group, args.seen, avg)
        for i, index in enumerate(ratio_index):
            input_data = next(dataiterator)
            catgory = input_data['choice']
            entry = dataset._roidb[dataset.ratio_index[i]]
            if cfg.TEST.PRECOMPUTED_PROPOSALS:
                # The roidb may contain ground-truth rois (for example, if the roidb
                # comes from the training or val split). We only want to evaluate
                # detection on the *non*-ground-truth rois. We select only the rois
                # that have the gt_classes field set to 0, which means there's no
                # ground truth.
                box_proposals = entry['boxes'][entry['gt_classes'] == 0]
                if len(box_proposals) == 0:
                    continue
            else:
                # Faster R-CNN type models generate proposals on-the-fly with an
                # in-network RPN; 1-stage models don't require proposals.
                box_proposals = None
            
            #im = cv2.imread(entry['image'])
            im = imread(entry['image'])

            if len(im.shape) == 2:
                im = im[:,:,np.newaxis]
                im = np.concatenate((im,im,im), axis=2)

            alpha = 2.2 # Simple contrast control
            beta = 0.5    # Simple brightness control
            im_colored = im.copy()
            if catgory[0].item() == 7:
                im_colored[:,:,0] = 0
                im_colored[:,:,1] = 0
                im_colored = cv2.convertScaleAbs(im_colored, alpha=alpha, beta=beta)
            elif catgory[0].item() == 8:
                im_colored[:,:,1] = 0
                im_colored[:,:,2] = 0
                im_colored = cv2.convertScaleAbs(im_colored, alpha=alpha, beta=beta)
            elif catgory[0].item() == 6: 
                im_colored[:,:,0] = 0
                im_colored[:,:,2] = 0
                im_colored = cv2.convertScaleAbs(im_colored, alpha=alpha, beta=beta)
            
            cls_boxes_i, cls_segms_i, cls_keyps_i = im_detect_all(model, im, input_data['query'], input_data['query_type'], catgory, num_cats, box_proposals, timers)
            im = im_colored
            extend_results(i, all_boxes, cls_boxes_i)
            if cls_segms_i is not None:
                extend_results(i, all_segms, cls_segms_i)
            if cls_keyps_i is not None:
                extend_results(i, all_keyps, cls_keyps_i)
            
            if i % 10 == 0:  # Reduce log file size
                ave_total_time = np.sum([t.average_time for t in timers.values()])
                eta_seconds = ave_total_time * (num_images - i - 1)
                eta = str(datetime.timedelta(seconds=int(eta_seconds)))
                det_time = (
                    timers['im_detect_bbox'].average_time +
                    timers['im_detect_mask'].average_time +
                    timers['im_detect_keypoints'].average_time
                )
                misc_time = (
                    timers['misc_bbox'].average_time +
                    timers['misc_mask'].average_time +
                    timers['misc_keypoints'].average_time
                )
                logger.info(
                    (
                        'im_detect: range [{:d}, {:d}] of {:d}: '
                        '{:d}/{:d} {:.3f}s + {:.3f}s (eta: {})'
                    ).format(
                        1, num_detect, num_detect, i + 1,
                        num_detect, det_time, misc_time, eta
                    )
                )

            if cfg.VIS:
                im_name = entry['image']
                class_name = im_name.split('/')[-4]
                file_name = im_name.split('/')[-3]
                
                im_target = im.copy()

                to_tensor = transforms.ToTensor()
                o_querys=[]
                for i in range(args.checkshot):
                    o_query = input_data['query'][0][i][0].permute(1, 2,0).contiguous().cpu().numpy()
                    o_query *= [0.229, 0.224, 0.225]
                    o_query += [0.485, 0.456, 0.406]
                    o_query *= 255
                    o_query_colored = o_query.copy()
                    if catgory[0].item() == 7:
                        o_query_colored[:,:,0] = 0
                        o_query_colored[:,:,1] = 0
                        o_query_colored = cv2.convertScaleAbs(o_query_colored, alpha=alpha, beta=beta)
                    elif catgory[0].item() == 8:
                        o_query_colored[:,:,1] = 0
                        o_query_colored[:,:,2] = 0
                        o_query_colored = cv2.convertScaleAbs(o_query_colored, alpha=alpha, beta=beta)
                    elif catgory[0].item() == 6: 
                        o_query_colored[:,:,0] = 0
                        o_query_colored[:,:,2] = 0
                        o_query_colored = cv2.convertScaleAbs(o_query_colored, alpha=alpha, beta=beta)
                    o_query = o_query_colored
                    o_query = Image.fromarray(o_query.astype(np.uint8))
                    o_querys.append(to_tensor(o_query))
                
                o_querys_grid = make_grid(o_querys, nrow=args.checkshot//2, normalize=True, scale_each=True, pad_value=1)
                o_querys_grid = transforms.ToPILImage()(o_querys_grid).convert("RGB")
                query_w, query_h = o_querys_grid.size
                query_bg = Image.new('RGB', (im_target.shape[1], im_target.shape[0]), (255, 255, 255))
                bg_w, bg_h = query_bg.size
                offset = ((bg_w - query_w) // 2, (bg_h - query_h) // 2)
                query_bg.paste(o_querys_grid, offset)
                query = np.asarray(query_bg)
                im_pair = np.concatenate((im_target, query), axis=1)
                
                im_output_dir = os.path.join(args.output_dir, 'vis', post_fix, class_name)

                if not os.path.exists(im_output_dir):
                    os.makedirs(im_output_dir)

                sample_output_dir = os.path.join(im_output_dir, os.path.basename('{:d}_{:s}'.format(i, file_name)))

                if not os.path.exists(sample_output_dir):
                    os.makedirs(sample_output_dir)
                
                target_save_name = os.path.join(sample_output_dir, os.path.basename('{:d}_{:s}'.format(i, file_name)) + '_target.pdf')
                target = Image.fromarray(im_target.astype(np.uint8))
                target.save(target_save_name,"pdf")

                query_save_name = os.path.join(sample_output_dir, os.path.basename('{:d}_{:s}'.format(i, file_name)) + '_query.pdf')
                query = Image.fromarray(query.astype(np.uint8))
                query.save(query_save_name,"pdf")

                pred_save_name = os.path.join(sample_output_dir, os.path.basename('{:d}_{:s}'.format(i, file_name)) + '_pred.pdf')
                vis_utils.save_one_image(
                        im,
                        pred_save_name,
                        cls_boxes_i,
                        segms = cls_segms_i,
                        keypoints = cls_keyps_i,
                        thresh = cfg.VIS_TH,
                        box_alpha = 0.6,
                        dataset = imdb,
                        show_class = False
                    )
                
                im_det = vis_utils.vis_one_image(
                        im,
                        '{:d}_det_{:s}'.format(i, file_name),
                        os.path.join(args.output_dir, 'vis', post_fix),
                        cls_boxes_i,
                        segms = cls_segms_i,
                        keypoints = cls_keyps_i,
                        thresh = cfg.VIS_TH,
                        box_alpha = 0.6,
                        dataset = imdb,
                        show_class = False,
                        class_name = class_name,
                        draw_bbox = False
                    )
                 
                gt_save_name = os.path.join(sample_output_dir, os.path.basename('{:d}_{:s}'.format(i, file_name)) + '_gt.pdf')
                vis_utils.save_one_image_gt(
                        im, entry['id'], 
                        gt_save_name,
                        dataset = imdb)
                im_gt = vis_utils.vis_one_image_gt(
                        im, entry['id'], 
                        '{:d}_gt_{:s}'.format(i, file_name),
                        os.path.join(args.output_dir, 'vis', post_fix),
                        dataset = imdb, 
                        class_name = class_name)
                im_det = np.asarray(im_det)
                im_gt = np.asarray(im_gt)
                im2draw = np.concatenate((im_gt, im_det), axis=1)
                im2show = np.concatenate((im_pair, im2draw), axis=0)

                im_save_name = os.path.basename('{:d}_{:s}'.format(i, file_name)) + '.png'
                cv2.imwrite(os.path.join(im_output_dir, '{}'.format(im_save_name)), cv2.cvtColor(im2show, cv2.COLOR_RGB2BGR))

            
            """
            if cfg.VIS:
                
                im_name = dataset._roidb[dataset.ratio_index[i]]['image']
                class_name = im_name.split('/')[-4]
                file_name = im_name.split('/')[-3]
                im2show = Image.open(im_name).convert("RGB")
                o_query = input_data['query'][0][0][0].permute(1, 2, 0).contiguous().cpu().numpy()
                o_query *= [0.229, 0.224, 0.225]
                o_query += [0.485, 0.456, 0.406]
                o_query *= 255
                o_query = o_query[:,:,::-1]

                o_query = Image.fromarray(o_query.astype(np.uint8))
                query_w, query_h = o_query.size
                query_bg = Image.new('RGB', (im2show.size), (255, 255, 255))
                bg_w, bg_h = query_bg.size
                offset = ((bg_w - query_w) // 2, (bg_h - query_h) // 2)
                query_bg.paste(o_query, offset)
                
                im2show = np.asarray(im2show)
                o_query = np.asarray(query_bg)

                im2show = np.concatenate((im2show, o_query), axis=1)
                output_dir = os.path.join(args.output_dir, 'vis')
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                im_save_dir = os.path.join(output_dir, class_name)
                if not os.path.exists(im_save_dir):
                    os.makedirs(im_save_dir)
                im_save_name = os.path.join(im_save_dir, file_name + '_%d_d.png'%(i))
                cv2.imwrite(im_save_name, cv2.cvtColor(im2show, cv2.COLOR_RGB2BGR))
                """
        cfg_yaml = yaml.dump(cfg)
        #det_name = 'detections.pkl'
        det_file = os.path.join(args.output_dir, 'detections_' + post_fix + '.pkl')
        save_object(
            dict(
                all_boxes=all_boxes,
                all_segms=all_segms,
                all_keyps=all_keyps,
                cfg=cfg_yaml
            ), det_file
        )
        logger.info('Wrote detections to: {}'.format(os.path.abspath(det_file)))
        
        results = task_evaluation.evaluate_all(
            imdb, all_boxes, all_segms, all_keyps, args.output_dir
        )
        task_evaluation.check_expected_results(
            results,
            atol=cfg.EXPECTED_RESULTS_ATOL,
            rtol=cfg.EXPECTED_RESULTS_RTOL
        )
        for task, metrics in all_results.items():
            metric_names = metrics.keys()
            for metric_name in metric_names:
                all_results[task][metric_name].append(results[imdb.name][task][metric_name])
        #task_evaluation.log_copy_paste_friendly_results(results)
    
    for task, metrics in all_results.items():
        metric_names = metrics.keys()
        for metric_name in metric_names:
            values = all_results[task][metric_name]
            all_results[task][metric_name] = sum(values) / len(values) 
    post_fix = '%dshot_g%d_seen%d'%(args.checkshot, args.group, args.seen)
    avg_results_path = os.path.join(args.output_dir, ('avg_cocoeval_' + post_fix + '_results.json'))
    with open(avg_results_path, 'w') as f:
        f.write(json.dumps(all_results))

    timer_for_total['total_test_time'].toc()
    logger.info('Total inference time: {:.3f}s'.format(timer_for_total['total_test_time'].average_time))
Esempio n. 5
0
def main(name_scope, gpu_dev, num_images, args):

    model = initialize_model_from_cfg()
    num_classes = cfg.MODEL.NUM_CLASSES
    all_boxes, all_segms, all_keyps = empty_results(num_classes, num_images)

    if '2d_best' in args.cfg_file:
        for i in range(num_images):
            print('Processing Detection for Frame %d'%(i+1))
            im_ = _read_video_frames(args.out_path, args.vid_name, i)
            im_ = np.expand_dims(im_, 0)
            with core.NameScope(name_scope):
                with core.DeviceScope(gpu_dev):
                    cls_boxes_i, cls_segms_i, cls_keyps_i = im_detect_all(
                        model, im_, None)                                        #TODO: Parallelize detection

            extend_results(i, all_boxes, cls_boxes_i)
            if cls_segms_i is not None:
                extend_results(i, all_segms, cls_segms_i)
            if cls_keyps_i is not None:
                extend_results(i, all_keyps, cls_keyps_i)
    elif '3d' in args.cfg_file:
        for i in range(num_images-2):
            print('Processing Detection for Frame %d to Frame %d' % (i + 1, i + 2))
            ims_ = _read_video_3frames(args.out_path, args.vid_name, i)
            # ims_ = np.expand_dims(ims_, 0)
            with core.NameScope(name_scope):
                with core.DeviceScope(gpu_dev):
                    cls_boxes_i, cls_segms_i, cls_keyps_i = im_detect_all(
                        model, ims_, None)     

            # extend boxes for 3 frames
            tmp_boxes_i2 = deepcopy(cls_boxes_i)
            tmp_boxes_i2[1] = tmp_boxes_i2[1][:, 8:]
            extend_results(i+2, all_boxes, tmp_boxes_i2)
            tmp_boxes_i1 = deepcopy(cls_boxes_i)
            tmp_boxes_i1[1] = tmp_boxes_i1[1][:, [4, 5, 6, 7, -1]]
            extend_results(i+1, all_boxes, tmp_boxes_i1)
            tmp_boxes_i0 = deepcopy(cls_boxes_i)
            tmp_boxes_i0[1] = tmp_boxes_i0[1][:, [0, 1, 2, 3, -1]]
            extend_results(i, all_boxes, tmp_boxes_i0)
            # extend segms for 3 frames
            if cls_segms_i is not None:
                extend_results(i+2, all_segms, cls_segms_i)
            # extend keyps for 3 frames
            if cls_keyps_i is not None:
                # extend the i+2 th one
                tmp_keyps_i2 = deepcopy(cls_keyps_i)
                for idx in range(len(tmp_keyps_i2[1])):
                    tmp_keyps_i2[1][idx] = tmp_keyps_i2[1][idx][:, 34:]
                extend_results(i+2, all_keyps, tmp_keyps_i2)
                # extend the i+1 th one
                tmp_keyps_i1 = deepcopy(cls_keyps_i)
                for idx in range(len(tmp_keyps_i1[1])):
                    tmp_keyps_i1[1][idx] = tmp_keyps_i1[1][idx][:, 17:34]
                extend_results(i + 1, all_keyps, tmp_keyps_i1)
                # extend the i th one
                tmp_keyps_i0 = deepcopy(cls_keyps_i)
                for idx in range(len(tmp_keyps_i0[1])):
                    tmp_keyps_i0[1][idx] = tmp_keyps_i0[1][idx][:, :17]
                extend_results(i, all_keyps, tmp_keyps_i0)


    cfg_yaml = yaml.dump(cfg)

    det_name = args.vid_name + '_detections.pkl'
    det_file = osp.join(args.out_path, det_name)
    robust_pickle_dump(
        dict(all_boxes=all_boxes,
             all_segms=all_segms,
             all_keyps=all_keyps,
             cfg=cfg_yaml),
        det_file)

    frames = sorted(glob.glob(osp.join(args.out_path,args.vid_name + '_frames','*.jpg')))

    out_detrack_file = osp.join(args.out_path, args.vid_name + '_detections_withTracks.pkl')

    # Debug configurations
    if cfg.TRACKING.DEBUG.UPPER_BOUND_2_GT_KPS:  # if this is true
        cfg.TRACKING.DEBUG.UPPER_BOUND = True  # This must be set true

    # Set include_gt True when using the roidb to evalute directly. Not doing
    # that currently
    dets = _load_det_file(det_file)
    if cfg.TRACKING.KEEP_CENTER_DETS_ONLY:
        _center_detections(dets)

    conf = cfg.TRACKING.CONF_FILTER_INITIAL_DETS
    dets = _prune_bad_detections(dets, conf)
    if cfg.TRACKING.LSTM_TEST.LSTM_TRACKING_ON:
        # Needs torch, only importing if we need to run LSTM tracking
        from lstm.lstm_track import lstm_track_utils
        lstm_model = lstm_track_utils.init_lstm_model(
            cfg.TRACKING.LSTM_TEST.LSTM_WEIGHTS)
        lstm_model.cuda()
    else:
        lstm_model = None

    dets_withTracks = compute_matches_tracks(frames, dets, lstm_model)
    _write_det_file(dets_withTracks, out_detrack_file)

    for i in range(num_images):
        vis_im = _generate_visualizations(frames[i], i, dets['all_boxes'], dets['all_keyps'], dets['all_tracks'])
        cv2.imwrite(osp.join(args.out_path, args.vid_name + '_vis','%08d.jpg'%(i+1)),vis_im)