def gen_landmark48_data(data_dir, anno_file, pnet_model_file, rnet_model_file, prefix_path='', use_cuda=True, vis=False): pnet, rnet, _ = create_mtcnn_net(p_model_path=pnet_model_file, r_model_path=rnet_model_file, use_cuda=use_cuda) mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, min_face_size=12) imagedb = ImageDB(anno_file, mode="test", prefix_path=prefix_path) imdb = imagedb.load_imdb() image_reader = TestImageLoader(imdb, 1, False) all_boxes = list() batch_idx = 0 for databatch in image_reader: if batch_idx % 100 == 0: print "%d images done" % batch_idx im = databatch if im.shape[0] >= 1200 or im.shape[1] >= 1200: all_boxes.append(np.array([])) batch_idx += 1 continue t = time.time() p_boxes, p_boxes_align = mtcnn_detector.detect_pnet(im=im) boxes, boxes_align = mtcnn_detector.detect_rnet(im=im, dets=p_boxes_align) if boxes_align is None: all_boxes.append(np.array([])) batch_idx += 1 continue if vis: rgb_im = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB) vision.vis_two(rgb_im, boxes, boxes_align) t1 = time.time() - t t = time.time() all_boxes.append(boxes_align) batch_idx += 1 save_path = config.MODEL_STORE_DIR if not os.path.exists(save_path): os.mkdir(save_path) save_file = os.path.join(save_path, "detections_%d.pkl" % int(time.time())) with open(save_file, 'wb') as f: cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL) gen_sample_data(data_dir, anno_file, save_file, prefix_path)
def gen_onet_data(data_dir, anno_file, pnet_model_file, rnet_model_file, prefix_path='', use_cuda=True, vis=False): pnet, rnet, _ = create_mtcnn_net(p_model_path=pnet_model_file, r_model_path=rnet_model_file, use_cuda=use_cuda) mtcnn_detector = MtcnnDetector(pnet=pnet, rnet=rnet, min_face_size=12) imagedb = ImageDB(anno_file, mode="test", prefix_path=prefix_path) imdb = imagedb.load_imdb() image_reader = TestImageLoader(imdb, 1, False) all_boxes = list() batch_idx = 0 print('size:%d' % image_reader.size) for databatch in image_reader: if batch_idx % 50 == 0: print("%d images done" % batch_idx) im = databatch t = time.time() # pnet detection = [x1, y1, x2, y2, score, reg] p_boxes, p_boxes_align = mtcnn_detector.detect_pnet(im=im) # rnet detection boxes, boxes_align = mtcnn_detector.detect_rnet(im=im, dets=p_boxes_align) if boxes_align is None: all_boxes.append(np.array([])) batch_idx += 1 continue if vis: rgb_im = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB) vision.vis_two(rgb_im, boxes, boxes_align) t1 = time.time() - t t = time.time() all_boxes.append(boxes_align) batch_idx += 1 save_path = './model_store' if not os.path.exists(save_path): os.mkdir(save_path) save_file = os.path.join(save_path, "detections_%d.pkl" % int(time.time())) with open(save_file, 'wb') as f: cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL) gen_onet_sample_data(data_dir, anno_file, save_file, prefix_path)
def gen_rnet_data(data_dir, anno_file, pnet_model_file, prefix_path='', use_cuda=True, vis=False): """ :param data_dir: train data :param anno_file: :param pnet_model_file: :param prefix_path: :param use_cuda: :param vis: :return: """ # load trained pnet model pnet, _, _ = create_mtcnn_net(p_model_path=pnet_model_file, use_cuda=use_cuda) mtcnn_detector = MtcnnDetector(pnet=pnet, min_face_size=12) # load original_anno_file, length = 12880 imagedb = ImageDB(anno_file, mode="test", prefix_path=prefix_path) imdb = imagedb.load_imdb() image_reader = TestImageLoader(imdb, 1, False) all_boxes = list() batch_idx = 0 print('size:%d' % image_reader.size) for databatch in image_reader: if batch_idx % 100 == 0: print("%d images done" % batch_idx) im = databatch t = time.time() # obtain boxes and aligned boxes boxes, boxes_align = mtcnn_detector.detect_pnet(im=im) if boxes_align is None: all_boxes.append(np.array([])) batch_idx += 1 continue if vis: rgb_im = cv2.cvtColor(np.asarray(im), cv2.COLOR_BGR2RGB) vision.vis_two(rgb_im, boxes, boxes_align) t1 = time.time() - t t = time.time() all_boxes.append(boxes_align) batch_idx += 1 # if batch_idx == 100: # break # print("shape of all boxes {0}".format(all_boxes)) # time.sleep(5) # save_path = model_store_path() # './model_store' save_path = '/home/quang/Downloads/mtcnn-pytorch/model_store' if not os.path.exists(save_path): os.mkdir(save_path) save_file = os.path.join(save_path, "detections_%d.pkl" % int(time.time())) with open(save_file, 'wb') as f: cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL) gen_rnet_sample_data(data_dir, anno_file, save_file, prefix_path)