def main(args): config = Config(args.in_settings) config.init(args.dataset) if args.verbose: config.debug() in_dir1 = config.temp_2d_dir in_dir2 = config.temp_3d_dir out_dir = config.temp_ensemble_dir analyze_ensemble(in_dir1=in_dir1, in_dir2=in_dir2, out_dir=out_dir, verbose=args.verbose)
def main(args): config = Config(args.in_settings) config.init(args.dataset) if args.connectivity != 0: config.ensemble_connectivity = args.connectivity if args.verbose: config.debug() in_dir = config.temp_ensemble_dir out_dir = config.output_path connectivity = config.ensemble_connectivity analyze_connection(in_dir=in_dir, out_dir=out_dir, in_filename=args.in_filename, stat=args.stat, connectivity=connectivity, verbose=args.verbose)
def predict(in_settings, overwrite_dataset=None, verbose=False): import tensorflow as tf config = tf.ConfigProto(gpu_options=tf.GPUOptions( allow_growth=True, per_process_gpu_memory_fraction=0.8)) session = tf.Session(config=config) keras.backend.tensorflow_backend.set_session(session) # config config = Config(in_settings) config.init(overwrite_dataset) if verbose: config.debug() # loading sample ds = Dataset2d() width, height, imgnum = ds.load_csv( os.path.join(config.input_path, 'input.csv')) model_mn = 16 # model magick number width_ex = int(math.ceil(width / model_mn) * model_mn) height_ex = int(math.ceil(height / model_mn) * model_mn) x_train = ds.image_read(os.path.join(config.input_path, '*.tif'), width, height) x_train_norm, x_width, x_height = reshape(x_train, (width_ex, height_ex)) # create model model_base = Model2d(config) model = model_base.load(input_shape=(width_ex, height_ex, 1)) if verbose: print('x_train_norm:', x_train_norm.shape) print(model.summary()) # predict y_pred = model.predict(x_train_norm, batch_size=config.predict_2d_batch_size, verbose=1 if verbose else 0) output = postprocess(y_pred, (width_ex, height_ex), (x_width, x_height)) # saving os.makedirs(config.temp_2d_dir, exist_ok=True) ds.image_save(output, config.temp_2d_dir)
def main(args): config = Config(args.in_settings) config.init(args.dataset) if args.verbose: config.debug() sample_dir = config.input_path model_path = config.model_3d_path out_dir = config.temp_3d_dir batch_size = config.predict_3d_batch_size crop_size = config.predict_3d_crop_size overlap = config.predict_3d_overlap predict(sample_dir=sample_dir, model_path=model_path, out_dir=out_dir, batch_size=batch_size, crop_size=crop_size, overlap=overlap, application=args.application, verbose=args.verbose)