Esempio n. 1
0
            results = F.concat(id, score, bbox, dim=-1)  # (b, 169, 3, 6)
        return F.reshape(results, shape=(0, -1, 6))  # (b, -1, 6)


# test
if __name__ == "__main__":
    from core import Yolov3, YoloTrainTransform, DetectionDataset
    import os

    input_size = (416, 416)
    root = os.path.dirname(
        os.path.dirname(
            os.path.dirname(
                os.path.dirname(os.path.dirname(os.path.abspath(__file__))))))

    transform = YoloTrainTransform(input_size[0], input_size[1])
    dataset = DetectionDataset(path=os.path.join(root, 'Dataset', 'train'),
                               transform=transform)
    num_classes = dataset.num_class

    image, label, _ = dataset[0]

    net = Yolov3(
        Darknetlayer=53,
        input_size=input_size,
        anchors={
            "shallow": [(10, 13), (16, 30), (33, 23)],
            "middle": [(30, 61), (62, 45), (59, 119)],
            "deep": [(116, 90), (156, 198), (373, 326)]
        },
        num_classes=num_classes,  # foreground만
Esempio n. 2
0
        scores = F.slice_axis(results, axis=-1, begin=1, end=2)
        bboxes = F.slice_axis(results, axis=-1, begin=2, end=6)
        return ids, scores, bboxes


# test
if __name__ == "__main__":
    from core import Yolov3, YoloTrainTransform, DetectionDataset
    import os

    input_size = (416, 416)
    root = os.path.dirname(
        os.path.dirname(
            os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
    transform = YoloTrainTransform(input_size[0],
                                   input_size[1],
                                   make_target=False)
    dataset = DetectionDataset(path=os.path.join(root, 'Dataset', 'train'),
                               transform=transform)
    num_classes = dataset.num_class

    image, label, _, _, _ = dataset[0]
    label = mx.nd.array(label)

    net = Yolov3(
        Darknetlayer=53,
        input_size=input_size,
        anchors={
            "shallow": [(10, 13), (16, 30), (33, 23)],
            "middle": [(30, 61), (62, 45), (59, 119)],
            "deep": [(116, 90), (156, 198), (373, 326)]