Esempio n. 1
0
    def setUpClass(self):

        spec = Model_pb2.Model()
        spec.specificationVersion = coremltools.SPECIFICATION_VERSION

        features = ['feature_1', 'feature_2']
        output = 'output'
        for f in features:
            input_ = spec.description.input.add()
            input_.name = f
            input_.type.doubleType.MergeFromString(b'')

        output_ = spec.description.output.add()
        output_.name = output
        output_.type.doubleType.MergeFromString(b'')

        lr = spec.glmRegressor
        lr.offset.append(0.1)
        weights = lr.weights.add()
        coefs = [1.0, 2.0]
        for i in coefs:
            weights.value.append(i)

        spec.description.predictedFeatureName = 'output'
        self.spec = spec
Esempio n. 2
0
    def setUpClass(self):
        spec = Model_pb2.Model()
        spec.specificationVersion = coremltools.SPECIFICATION_VERSION

        features = ["feature_1", "feature_2"]
        output = "output"
        for f in features:
            input_ = spec.description.input.add()
            input_.name = f
            input_.type.doubleType.MergeFromString(b"")

        output_ = spec.description.output.add()
        output_.name = output
        output_.type.doubleType.MergeFromString(b"")

        layer = spec.neuralNetwork.layers.add()
        layer.name = "custom1"
        layer.input.append("input")
        layer.output.append("temp1")
        layer.custom.className = "name1"

        layer2 = spec.neuralNetwork.layers.add()
        layer2.name = "custom2"
        layer2.input.append("temp1")
        layer2.output.append("temp2")
        layer2.custom.className = "name2"

        layer3 = spec.neuralNetwork.layers.add()
        layer3.name = "custom3"
        layer3.input.append("temp2")
        layer3.output.append("output")
        layer3.custom.className = "name1"

        self.spec = spec
Esempio n. 3
0
    def setUpClass(self):

        spec = Model_pb2.Model()
        spec.specificationVersion = coremltools.SPECIFICATION_VERSION

        features = ['feature_1', 'feature_2']
        output = 'output'
        for f in features:
            input_ = spec.description.input.add()
            input_.name = f
            input_.type.doubleType.MergeFromString('')

        output_ = spec.description.output.add()
        output_.name = output
        output_.type.doubleType.MergeFromString('')

        layer = spec.neuralNetwork.layers.add()
        layer.name = 'custom1'
        layer.input.append('input')
        layer.output.append('temp1')
        layer.custom.className = 'name1'

        layer2 = spec.neuralNetwork.layers.add()
        layer2.name = 'custom2'
        layer2.input.append('temp1')
        layer2.output.append('temp2')
        layer2.custom.className = 'name2'

        layer3 = spec.neuralNetwork.layers.add()
        layer3.name = 'custom3'
        layer3.input.append('temp2')
        layer3.output.append('output')
        layer3.custom.className = 'name1'

        self.spec = spec
Esempio n. 4
0
def load_spec(filename):
    """
    Load a protobuf model specification from file.

    Parameters
    ----------
    filename: str
        Location on disk (a valid file path) from which the file is loaded
        as a protobuf spec.

    Returns
    -------
    model_spec: Model_pb
        Protobuf representation of the model

    Examples
    --------
    .. sourcecode:: python

        >>> spec = coremltools.utils.load_spec('HousePricer.mlmodel')
        >>> spec = coremltools.utils.load_spec('HousePricer.mlpackage')

    See Also
    --------
    save_spec
    """
    if _ModelPackage is None:
        raise Exception(
            "Unable to load libmodelpackage. Cannot make save spec.")

    spec = _Model_pb2.Model()

    specfile = filename
    if _ModelPackage.isValid(filename):
        specfile = _ModelPackage(filename).getRootModel().path()

    with open(specfile, "rb") as f:
        contents = f.read()
        spec.ParseFromString(contents)
        return spec
Esempio n. 5
0
def load(prog, weights_dir, resume_on_errors=False, **kwargs):
    if "main" not in prog.functions:
        raise ValueError("main function not found in program")

    mil_passes.mil_backend_passes(prog)

    # if user has specified "ClassifierConfig", then add the "classify" op to the prog
    classifier_config = kwargs.get("classifier_config", None)
    predicted_feature_name = None
    predicted_probabilities_name = None
    if classifier_config is not None:
        predicted_feature_name, predicted_probabilities_name = _add_classify_op(
            prog, classifier_config)

    input_types = prog.main_input_types
    weight_path = os.path.join(weights_dir, _WEIGHTS_FILE_NAME)
    blob_writer = BlobWriter(weight_path)

    function_protos = {}
    for func_name, func in prog.functions.items():
        function_protos[func_name] = convert_function(func, prog.parameters,
                                                      blob_writer)

    proto = pm.Program(
        version=1,
        functions=function_protos,
    )

    input_features = []
    output_features = []
    symbolic_inputs = []
    image_input_names = {
    }  # these are the model inputs marked as image by the user
    input_shape_map = {}

    for input_type in input_types:
        if isinstance(input_type, ImageType):
            image_input_names[input_type.name] = input_type
            # error checking for input(s) marked as images
            if input_type.name not in list(
                    prog.functions["main"].inputs.keys()):
                msg = "Provided image input '{}' is not one of the inputs of the MIL program"
                raise ValueError(msg.format(input_type.name))
        input_shape_map[input_type.name] = input_type

    for name, var in prog.functions["main"].inputs.items():
        input_feature_type = ft.FeatureType()

        # error checking for input(s) marked as images
        # an image input must be of type tensor in program proto
        # (since an image type does not exist in MIL program)
        if name in image_input_names and \
                not types.is_tensor(var.sym_type):
            raise ValueError(
                "For the image input, '{}', its type in the MIL program must be tensor. "
                "Instead it is {}.".format(name, var.sym_type.__type_info__()))

        if types.is_tensor(var.sym_type):
            shape = var.sym_type.get_shape()
            if any_variadic(shape):
                raise ValueError(
                    "Variable rank model inputs are not supported!")
            if any_symbolic(shape):
                symbolic_inputs.append(name)
                # We extract the default input shape given by user first
                if name in input_shape_map:
                    shape = input_shape_map[name].shape.default
                else:
                    logging.warning(
                        "Input shape not fully specified by enumerated shapes or range dim! 1 will be used for dimension not specified instead."
                    )
                # If no input shape is provided (ex. auto conversion of -1 in Tensorflow)
                shape = [1 if is_symbolic(d) else d for d in shape]

            if name not in image_input_names:
                # make a feature type of Type "multiArrayType"
                array_type = ft.ArrayFeatureType(
                    shape=shape,
                    dataType=cast_to_framework_io_dtype(var, False))
                input_feature_type.multiArrayType.CopyFrom(array_type)
            else:
                if len(shape) < 3:
                    raise ValueError(
                        "Image input, '{}', must have rank at least 3. Instead it has rank {}"
                        .format(name, len(shape)))
                # make a feature type of Type "imageType"
                input_type = image_input_names[name]
                if not input_type.channel_first:
                    raise ValueError(
                        "Image input, '{}', must be in the channel_first format"
                        .format(name))

                if input_type.color_layout == "G":
                    clr_space = ft.ImageFeatureType.ColorSpace.GRAYSCALE
                elif input_type.color_layout == "BGR":
                    clr_space = ft.ImageFeatureType.ColorSpace.BGR
                else:
                    clr_space = ft.ImageFeatureType.ColorSpace.RGB

                image_type = ft.ImageFeatureType(width=shape[-1],
                                                 height=shape[-2],
                                                 colorSpace=clr_space)
                input_feature_type.imageType.CopyFrom(image_type)

            input_features.append(
                ml.FeatureDescription(name=name, type=input_feature_type))
        elif types.is_scalar(var.sym_type):
            array_type = ft.ArrayFeatureType(
                shape=[1], dataType=cast_to_framework_io_dtype(var, False))
            input_feature_type.multiArrayType.CopyFrom(array_type)
            input_features.append(
                ml.FeatureDescription(name=var.name, type=input_feature_type))
        else:
            raise NotImplementedError()

    for var in prog.functions["main"].outputs:
        output_feature_type = ft.FeatureType()
        if types.is_tensor(var.sym_type) or types.is_primitive(var.sym_type):
            dataType = None
            if classifier_config is None or var.name != predicted_feature_name:
                # Not a classifier output, make sure model output type matches with ML Program type.
                dataType = cast_to_framework_io_dtype(var, True)
            else:
                # Classifier outputs are set up separately, so default to fp32 for now.
                dataType = ft.ArrayFeatureType.ArrayDataType.FLOAT32

            array_type = ft.ArrayFeatureType(shape=None, dataType=dataType)
            output_feature_type.multiArrayType.CopyFrom(array_type)
            output_features.append(
                ml.FeatureDescription(name=var.name, type=output_feature_type))
        elif (types.is_dict(var.sym_type)):
            output_feature_type.dictionaryType.MergeFromString(b"")
            keytype, valtype = var.sym_type.T
            if types.is_str(keytype):
                output_feature_type.dictionaryType.stringKeyType.MergeFromString(
                    b"")
            elif (keytype == types_int64):
                output_feature_type.dictionaryType.int64KeyType.MergeFromString(
                    b"")
            else:
                raise ValueError("Dictionary key type not supported.")
            output_features.append(
                ml.FeatureDescription(name=var.name, type=output_feature_type))
        else:
            raise NotImplementedError()

    # Model description
    desc = ml.ModelDescription(input=input_features, output=output_features)
    if classifier_config is not None:
        desc.predictedFeatureName = predicted_feature_name
        desc.predictedProbabilitiesName = predicted_probabilities_name

        # Manually edit output type of predictedFeatureName.
        # It doesn't use MLMultiArray and really uses a "primitive" type.
        for output in desc.output:
            if output.name == predicted_feature_name:
                if type(classifier_config.class_labels[0]) == int:
                    output.type.int64Type.MergeFromString(b"")
                else:
                    output.type.stringType.MergeFromString(b"")
                break

    # Create ML Model
    model = ml.Model(description=desc,
                     specificationVersion=_SPECIFICATION_VERSION_IOS_15)
    model.mlProgram.CopyFrom(proto)

    # Set symbolic shapes
    for input_name in symbolic_inputs:
        input_type = input_shape_map.get(input_name, None)

        if isinstance(input_type, ImageType):
            if isinstance(input_type.shape, EnumeratedShapes):
                enumerated_shapes = []
                for s in input_type.shape.shapes:
                    enumerated_shapes.append(
                        NeuralNetworkImageSize(height=s.shape[-2],
                                               width=s.shape[-1]))
                add_enumerated_image_sizes(model,
                                           input_name,
                                           sizes=enumerated_shapes)
            else:
                img_range = NeuralNetworkImageSizeRange()
                H = input_type.shape.shape[-2]
                W = input_type.shape.shape[-1]

                if isinstance(H, RangeDim):
                    img_range.add_height_range((H.lower_bound, H.upper_bound))
                elif is_symbolic(H):
                    img_range.add_height_range((1, -1))
                else:
                    img_range.add_height_range((H, H))
                if isinstance(W, RangeDim):
                    img_range.add_width_range((W.lower_bound, W.upper_bound))
                elif is_symbolic(W):
                    img_range.add_width_range((1, -1))
                else:
                    img_range.add_width_range((W, W))

                update_image_size_range(model, input_name, img_range)
        elif isinstance(input_type, TensorType):
            if isinstance(input_type.shape, EnumeratedShapes):
                add_multiarray_ndshape_enumeration(
                    model, input_name,
                    [tuple(s.shape) for s in input_type.shape.shapes])
            else:
                lb = []
                ub = []
                for s in input_type.shape.shape:
                    if isinstance(s, RangeDim):
                        lb.append(s.lower_bound)
                        ub.append(s.upper_bound)
                    elif is_symbolic(s):
                        lb.append(1)
                        ub.append(-1)
                    else:
                        lb.append(s)
                        ub.append(s)
                set_multiarray_ndshape_range(model,
                                             input_name,
                                             lower_bounds=lb,
                                             upper_bounds=ub)
        elif input_type is None:
            sym_type = prog.functions["main"].inputs[input_name].sym_type
            lb = []
            ub = []
            for s in sym_type.get_shape():
                if is_symbolic(s):
                    lb.append(1)
                    ub.append(-1)
                else:
                    lb.append(s)
                    ub.append(s)
            set_multiarray_ndshape_range(model,
                                         input_name,
                                         lower_bounds=lb,
                                         upper_bounds=ub)

    # Set optional inputs
    _set_optional_inputs(model, input_types)

    return model