Esempio n. 1
0
item_graph_module = GraphModule(data=contexts)

ratio_split = RatioSplit(data=ratings,
                         test_size=0.2,
                         rating_threshold=3.5,
                         shuffle=True,
                         exclude_unknowns=True,
                         verbose=True,
                         item_graph=item_graph_module)

pcrl = PCRL(k=100, z_dims=[300], max_iter=300, learning_rate=0.001)

# Evaluation metrics
nDgc = metrics.NDCG(k=-1)
rec = metrics.Recall(k=20)
pre = metrics.Precision(k=20)

# Instantiate and run your experiment
exp = Experiment(eval_method=ratio_split,
                 models=[pcrl],
                 metrics=[nDgc, rec, pre])
exp.run()
"""
Output:
     | NDCG@-1 | Recall@20 | Precision@20 | Train (s) | Test (s)
---- + ------- + --------- + ------------ + --------- + --------
pcrl |  0.1922 |    0.0862 |       0.0148 | 2591.4878 |   4.0957

*Results may change slightly from one run to another due to different random initial parameters
"""
Esempio n. 2
0
from cornac.metrics import MAE, RMSE, Precision, Recall, NDCG, AUC, MAP

from cornac.eval_methods import PropensityStratifiedEvaluation
from cornac.experiment import Experiment

# Load the MovieLens 1M dataset
ml_dataset = cornac.datasets.movielens.load_feedback(variant="1M")

# Instantiate an instance of PropensityStratifiedEvaluation method
stra_eval_method = PropensityStratifiedEvaluation(
    data=ml_dataset,
    n_strata=2,  # number of strata
    rating_threshold=4.0,
    verbose=True)

# define the examined models
models = [
    WMF(k=10, seed=123),
    BPR(k=10, seed=123),
]

# define the metrics
metrics = [MAE(), RMSE(), Precision(k=10), Recall(k=10), NDCG(), AUC(), MAP()]

# run an experiment
exp_stra = Experiment(eval_method=stra_eval_method,
                      models=models,
                      metrics=metrics)

exp_stra.run()