def main(): ticker = str( input( "Please enter the Stock ticker that you would like to analyze: ")) totalChoices = 3 print() print("What would you like to know about this stock?") print("(1) Get recent news") print("(2) Analyze Moving Average") print("(3) Compare correlation with another stock") print("(0) Exit") while (True): try: print() i = int(input("Please Enter your selection, or enter 0 to exit: ")) if (i < 0 or i > totalChoices): print("ERROR: Please enter an integer value between 0-3") elif (i == 0): break elif (i == 1): news_scrape.scrape_news(ticker) elif (i == 2): moving_avg.move_avg(ticker) elif (i == 3): ticker2 = str( input( "Please enter the Stock ticker that you would like to compare: " )) correlation.correlate(ticker, ticker2) except Exception as e: print("ERROR: Please enter an integer value between 0-3") continue
def test_correlation(self): self.v = 0 dtime_t, cval = correlate(self.x, self.y, self.dt, self.v, 't') ndtime = int(round(dtime_t*1./self.dt)) yy = np.zeros(len(self.y)) yy[:ndtime] = self.y[-ndtime:] dtime_f = correlate(self.x, yy, self.dt, self.v, 'f') dtime = dtime_t+dtime_f self.assertAlmostEqual(dtime, self.expected_tau, 2)
def perform2fa(): if request.method == 'POST': f = request.files['file'] print("Received the file ", f.filename) filePath = "./" + secure_filename(f.filename) f.save(filePath) if "audiorecordpc" in f.filename: send_request_to_mobile("send_file") else: return "File Received Successfully" while True: time.sleep(1) if path.exists("audiorecordmobile.mp4"): corr = correlate('audiorecordpc.mp4', 'audiorecordmobile.mp4') break print( "Removing the locally saved files audiorecordpc.mp4, audiorecordmobile.mp4" ) os.remove("audiorecordpc.mp4") os.remove("audiorecordmobile.mp4") if (corr > 0.5): print( "correlation greater than threshold, so redirecting to homepage" ) return redirect(url_for('home')) print( "correlation less than threshold, so returning the user back to login page" ) return render_template('index.html', msg="Two Factor Authentication Failed")
def validate(directory, results_file, crlation, seed): reader = ScoreReader() for file in [ os.path.join(directory, file) for directory in directory for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file)) ]: reader.read(file, None) results = {} with open(results_file) as f: for line in f: parts = line.strip().split() results[parts[0]] = float(parts[1]) # Run cross-validation validator = CorrelationKFoldValidator(results, correlation=crlation, verbose=True) scored_test_items = validator.cross_validate(*reader.scored_items(), seed=seed, concatenate=False) # Output results #for item in scored_test_items[1]: # print('{}\t{}'.format(item, str(scored_test_items[1][item]))) cor = scipy.stats.pearsonr if correlation == 'pearson' else scipy.stats.kendalltau c, p = correlation.correlate(results, scored_test_items, cor, sig=True) return (c, p)
directories = [f for f in listdir(song_dir) if isdir(join(song_dir, f))] for dir in directories: songfolder = join(song_dir, dir) csv_filename = join(csv_dir, dir + '.csv') if exists(csv_filename): remove(csv_filename) csv_file = open(csv_filename, "w+", newline='') writer = csv.writer(csv_file, delimiter=';') writer.writerow(['ID', 'Pan']) wav_files = [(int(f[:-4]), join(songfolder, f)) for f in listdir(songfolder)] wav_files_dict = dict(wav_files) file1 = '' file2 = '' last_processed_index = 0 for ind, file in enumerate(sorted(wav_files_dict)): file1 = file2 file2 = wav_files_dict[file] max_corr, max_corr_offset = 0, 0 if file1 and file2: max_corr, max_corr_offset = correlate(file1, file2) if max_corr > 0.62 and max_corr_offset == 0: writer.writerow([str(ind - 1), 'L']) writer.writerow([str(ind), 'R']) last_processed_index = ind elif last_processed_index < (ind - 1) or ind == 1: writer.writerow([str(ind - 1), 'M']) last_processed_index = ind - 1 print("finished " + dir + "\n") csv_file.close()
import argparse from correlation import correlate from tkinter.filedialog import askdirectory def initialize(song, song2): SOURCE_FILE = song TARGET_FILE = song2 if not SOURCE_FILE or not TARGET_FILE: raise Exception("Source or Target files not specified.") return SOURCE_FILE, TARGET_FILE if __name__ == "__main__": SOURCE_FILE, TARGET_FILE = initialize() correlate(SOURCE_FILE, TARGET_FILE)
def test_auto_corr_fr(self): self.v = 0 dtime = correlate(self.x, self.x, self.dt, self.v, 'f') self.assertEqual(dtime, 0)
def test_auto_corr_time(self): self.v = 0 dtime, cval = correlate(self.x, self.x, self.dt, self.v, 't') self.assertAlmostEqual(cval, 1) self.assertAlmostEqual(dtime, 0)
def main(thresh, theta, mid, line, start, path): #start = 0: all 1:after create template 2:after correlation 3: after graph 4: just plot # # read input files set_status(Messages.START_RUN) target_path = path # set_status(Messages.START_CYL) cylinder_creation(target_path) set_status(Messages.END_CYL) ideal_cyl = dir_path + "/source/Cylinder.mrc" if not os.path.exists(dir_path + "/correlation"): os.makedirs(dir_path + "/correlation") if not os.path.exists(dir_path + "/Templates"): os.makedirs(dir_path + "/Templates") try: target_map = MapParser.readMRC(target_path) cylinder_map = MapParser.readMRC(ideal_cyl) apix = target_map.apix # except Exception as e: # print e except: print Messages.INPUT_FILES_ERROR if start < 1 or not (len(os.listdir(dir_path + "/Templates")) >= 144): # generate templates dic_directions = run_templates(target_map, cylinder_map, overwrite=True) else: try: with open(dir_path + "/correlation/dir_directions.p") as g: dic_directions = pickle.load(g) except IOError: if start > 0: set_status(Messages.BUMPED_BACK) return main(thresh, theta, mid, line, start-1, path) if start < 2 or (not (os.path.isfile(dir_path + "/correlation" + "/max_score"))): try: # compute correlation set_status(Messages.START_CORRELATION) max_score, max_dirs = correlate(target_map) set_status(Messages.DONE_CORRELATION) except IOError: if start > 0: set_status(Messages.BUMPED_BACK) return main(thresh, theta, mid, line, start-1, path) if start < 3: graph = run_graph(theta, apix, THRESHOLD=thresh) else: try: with open(dir_path + "/source/graph.p", 'rb') as g: graph = pickle.load(g) except IOError: graph = run_graph(theta,apix, THRESHOLD=thresh) if graph == None: if start > 0: set_status(Messages.BUMPED_BACK) return main(thresh, theta, mid, line, start - 1, path) else: return if start < 4: graph2 = run_linkage(theta, mid, line, apix) else: try: with open(dir_path + "/source/graph2.p", 'rb') as g: graph2 = pickle.load(g) except IOError: graph2 = run_linkage(theta, mid, line, apix) if graph2 == None: if start > 0: set_status(Messages.BUMPED_BACK) return main(thresh, theta, mid, line, start - 1, path) else: return output = pruning(graph2, cylinder_map.box_size()) set_status(Messages.END_RUN) plot_matrix(graph2, target_map.box_size())