import initialisation import iteration from scipy.spatial import ConvexHull from parameters import dt, tSim, N, S, p, num_fact, p_fact, dzeta, a_pf, eps, \ f_russo, cm, a, U, w, tau_1, tau_2, tau_3_A, tau_3_B, g_A, beta, tau, \ t_0, g, random_seed, set_name, p_0, n_p, nSnap import matplotlib as mpl import matplotlib.pyplot as plt if os.environ.get('DISPLAY', '') == '': print('no display found. Using non-interactive Agg backend') mpl.use('Agg') plt.ion() plt.close('all') ksi_i_mu, delta__ksi_i_mu__k \ = patterns.get_from_file('pattern_generation_saved') C1C2C0 = correlations.cross_correlations(ksi_i_mu, normalized=False) data = C1C2C0[:, 0] c_min = np.min(data) c_max = np.max(data) c_bins_Ale = np.arange(c_min, c_max, 1) c_ticks_Ale = np.arange(c_min, c_max, max(1, int((c_max - c_min) / 15))) plt.figure(1) plt.hist(C1C2C0[:, 0], bins=c_bins_Ale, edgecolor='black', density=True) plt.xticks(c_ticks_Ale) plt.title(r"Ale's C algorithm, $a_{pf}=0.75$, $\zeta=0.02$")
# plt.tight_layout() s = 2 shift = 1 / N / a / 5 # In order categories to be visible in scatter lamb = np.array(crossovers) low_cor = lamb < 0.3 l_low_cor = r'$\lambda < 0.3$' mid_low_cor = np.logical_and(0.3 <= lamb, lamb < 0.5) l_mid_low_cor = r'$0.3 \leq \lambda < 0.5$' mid_high_cor = np.logical_and(0.5 <= lamb, lamb < 0.7) l_mid_high_cor = r'$0.5 \leq \lambda < 0.7$' high_cor = 0.7 <= lamb l_high_cor = r'$0.7 \leq \lambda $' C1C2C0 = correlations.cross_correlations(ksi_i_mu) ax_order = 'xC1yC2' if ax_order == 'xC1yC2': xx = correlations.active_same_state(ksi_i_mu[:, previous], ksi_i_mu[:, following]) yy = correlations.active_diff_state(ksi_i_mu[:, previous], ksi_i_mu[:, following]) zz = correlations.active_inactive(ksi_i_mu[:, previous], ksi_i_mu[:, following]) XX = C1C2C0[:, 0] YY = C1C2C0[:, 1] else: xx = correlations.active_diff_state(ksi_i_mu[:, previous], ksi_i_mu[:, following]) yy = correlations.active_same_state(ksi_i_mu[:, previous],