Esempio n. 1
0
def run_single_file_for_multi_process(params):

    file_path, file_ind, total_file_num, t0 = params

    print('{:6.1f} min; {} / {}; {}: regenerating strf ...'.format(
        (time.time() - t0) / 60., file_ind + 1, total_file_num, file_path))

    nwb_f = nt.RecordedFile(file_path)
    lsn_name = '001_LocallySparseNoiseRetinotopicMapping'
    if dt.get_strf_grp_key(nwb_f.file_pointer) is None:
        if lsn_name in nwb_f.file_pointer['analysis/photodiode_onsets']:
            nwb_f.get_spatial_temporal_receptive_field_retinotopic_mapping(
                stim_name=lsn_name, time_window=strf_t_win, verbose=False)

    dgc_name = '003_DriftingGratingCircleRetinotopicMapping'
    if dt.get_dgcrm_grp_key(nwb_f.file_pointer) is None:
        if dgc_name in nwb_f.file_pointer['analysis/photodiode_onsets']:
            nwb_f.get_drifting_grating_response_table_retinotopic_mapping(
                stim_name=dgc_name, time_window=dgc_t_win)

    dgc_name = '001_DriftingGratingCircleRetinotopicMapping'
    if dt.get_dgcrm_grp_key(nwb_f.file_pointer) is None:
        if dgc_name in nwb_f.file_pointer['analysis/photodiode_onsets']:
            nwb_f.get_drifting_grating_response_table_retinotopic_mapping(
                stim_name=dgc_name, time_window=dgc_t_win)

    nwb_f.close()
def process_one_nwb_for_multi_thread(inputs):

    nwb_path, params, columns, save_folder, t0 = inputs
    nwb_fn = os.path.splitext(os.path.split(nwb_path)[1])[0]
    save_path = os.path.join(save_folder, nwb_fn + '.xlsx')

    if os.path.isfile(save_path):
        print('\tt: {:5.0f} minutes, {} , excel table already exists, skip.'.
              format((time.time() - t0) / 60., nwb_fn))
        return None
    else:
        nwb_f = h5py.File(nwb_path, 'r')

        plane_ns = [
            k for k in nwb_f['processing'].keys()
            if k[0:16] == 'rois_and_traces_'
        ]
        plane_ns = [k[16:] for k in plane_ns]
        plane_ns.sort()
        # print('total plane number: {}'.format(len(plane_ns)))

        total_roi_num = 10000
        big_array = np.zeros((total_roi_num, len(columns)), dtype=np.float64)
        big_array[:] = np.nan
        df = pd.DataFrame(data=big_array, columns=columns)

        curr_row_ind = 0
        for plane_n in plane_ns:
            print('\tt: {:5.0f} minutes, {} / {}, processing ...'.format(
                (time.time() - t0) / 60., nwb_fn, plane_n))
            roi_ns = nwb_f[
                'processing/rois_and_traces_{}/ImageSegmentation/imaging_plane/roi_list'
                .format(plane_n)].value
            roi_ns = [r.encode('utf-8') for r in roi_ns if r[0:4] == 'roi_']
            roi_ns.sort()

            for roi_i, roi_n in enumerate(roi_ns):
                # print('\t\t\troi: {} / {}'.format(roi_i+1, len(roi_ns)))
                roi_properties, _, _, _, _, _, _, _, _, _, _, _, _, _ = \
                    dt.get_everything_from_roi(nwb_f=nwb_f, plane_n=plane_n, roi_n=roi_n, params=params)
                for rp_name, rp_value in roi_properties.items():
                    df.loc[curr_row_ind, rp_name] = rp_value

                curr_row_ind += 1

        df = df[0:curr_row_ind]

        save_path = os.path.join(save_folder, nwb_fn + '.xlsx')
        if os.path.isfile(save_path):
            os.remove(save_path)

        with pd.ExcelWriter(save_path, mode='w') as writer:
            df.to_excel(writer, sheet_name='sheet1')
def process_one_nwb_for_multi_thread(inputs):

    nwb_path, params, columns, save_folder, t0, nwb_i, nwb_f_num, is_overwrite = inputs
    nwb_fn = os.path.splitext(os.path.split(nwb_path)[1])[0]

    nwb_f = h5py.File(nwb_path, 'r')

    plane_ns = [
        k for k in nwb_f['processing'].keys() if k[0:16] == 'rois_and_traces_'
    ]
    plane_ns = [k[16:] for k in plane_ns]
    plane_ns.sort()
    # print('total plane number: {}'.format(len(plane_ns)))

    for plane_n in plane_ns:
        print('\tt: {:5.0f} minutes, processing {}, {} / {}, {} ...'.format(
            (time.time() - t0) / 60., nwb_fn, nwb_i + 1, nwb_f_num, plane_n))

        save_fn = '_'.join(nwb_fn.split('_')[0:2]) + '_' + plane_n + '.xlsx'
        save_path = os.path.join(save_folder, save_fn)
        if os.path.isfile(save_path):

            if is_overwrite:  # overwrite existing xlsx files
                print('\t{}, file already exists. Overwirite.'.format(
                    os.path.split(save_path)[1]))
                os.remove(save_path)

            else:  # do not overwrite existing xlsx files
                print('\t{}, file already exists. Skip.'.format(
                    os.path.split(save_path)[1]))
                return

        roi_ns = nwb_f[
            'processing/rois_and_traces_{}/ImageSegmentation/imaging_plane/roi_list'
            .format(plane_n)].value
        roi_ns = [r.encode('utf-8') for r in roi_ns if r[0:4] == 'roi_']
        roi_ns.sort()

        df = pd.DataFrame(np.nan, index=range(len(roi_ns)), columns=columns)

        for roi_i, roi_n in enumerate(roi_ns):
            # print('\t\t\troi: {} / {}'.format(roi_i+1, len(roi_ns)))
            roi_properties, _, _, _, _, _, _, _, _, _, _, _, _, _ = \
                dt.get_everything_from_roi(nwb_f=nwb_f, plane_n=plane_n, roi_n=roi_n, params=params)
            for rp_name, rp_value in roi_properties.items():
                df.loc[roi_i, rp_name] = rp_value

        with pd.ExcelWriter(save_path, mode='w') as writer:
            df.to_excel(writer, sheet_name='sheet1')
    print('plotting rois in {} ...'.format(plane_n))

    plane_grp = strf_grp[plane_n]
    pdff = PdfPages(os.path.join(save_folder,
                                 'zscore_RFs_' + plane_n + '.pdf'))

    roi_lst = nwb_f['processing/rois_and_traces_' + plane_n +
                    '/ImageSegmentation/imaging_plane/roi_list'].value
    roi_lst = [r for r in roi_lst if r[:4] == 'roi_']
    roi_lst.sort()

    for roi_ind, roi_n in enumerate(roi_lst):
        print('roi: {} / {}'.format(roi_ind + 1, len(roi_lst)))

        curr_trace, _ = dt.get_single_trace(nwb_f=nwb_f,
                                            plane_n=plane_n,
                                            roi_n=roi_n)
        if np.min(curr_trace) < bias:
            add_to_trace = -np.min(curr_trace) + bias
        else:
            add_to_trace = 0.

        curr_strf = sca.get_strf_from_nwb(h5_grp=strf_grp[plane_n],
                                          roi_ind=roi_ind,
                                          trace_type=trace_type)
        curr_strf_dff = curr_strf.get_local_dff_strf(
            is_collaps_before_normalize=True, add_to_trace=add_to_trace)
        # v_min, v_max = curr_strf_dff.get_data_range()

        rf_on, rf_off = curr_strf_dff.get_zscore_receptive_field(
            timeWindow=t_window)
    nwb_f = h5py.File(
        os.path.join(nwb_folder, '{}_{}_110_repacked.nwb'.format(date, mid)),
        'r')
    clu_f = h5py.File(
        os.path.join(clu_folder,
                     '{}_{}_{}_axon_grouping.hdf5'.format(date, mid, plane_n)),
        'r')

    curr_dfa = dfa[(dfa['date'] == date) & (dfa['mouse_id'] == mid) &
                   (dfa['plane_n'] == plane_n)].reset_index()

    for axon_i, axon_row in curr_dfa.iterrows():

        axon_morph = dt.get_axon_morphology(clu_f=clu_f,
                                            nwb_f=nwb_f,
                                            plane_n=plane_n,
                                            axon_n=axon_row['roi_n'])
        axon_morph.update({
            'date': date,
            'mouse_id': mid,
            'plane_n': plane_n,
            'roi_n': axon_row['roi_n']
        })

        axon_morph_dict[ind] = axon_morph
        ind = ind + 1

dfa_morph = pd.DataFrame.from_dict(axon_morph_dict, orient='index')
print(dfa_morph)

strs = os.path.splitext(dfa_fn)[0].split('_')
Esempio n. 6
0
                alpha=0.5,
            )
        ax_and_pm.get_yaxis().set_ticks([])

        # =============================azi alt spatial distribution=============================================
        ax_alt_or = f.add_subplot(4, 5, 4)
        ax_alt_or.set_title('altitude')
        ax_azi_or = f.add_subplot(4, 5, 5)
        ax_azi_or.set_title('azimuth')
        if len(df_or) > 0:
            dt.plot_roi_retinotopy(
                coords_rf=df_or[[
                    'rf_{}_onoff_center_alt'.format(response_dir),
                    'rf_{}_onoff_center_azi'.format(response_dir)
                ]].values,
                coords_roi=df_or[['roi_center_row', 'roi_center_col']].values,
                ax_alt=ax_alt_or,
                ax_azi=ax_azi_or,
                cmap='viridis',
                canvas_shape=(512, 512),
                edgecolors='#000000',
                linewidth=0.5)
        else:
            ax_alt_or.set_xticks([])
            ax_alt_or.set_yticks([])
            ax_azi_or.set_xticks([])
            ax_azi_or.set_yticks([])

        ax_alt_on = f.add_subplot(4, 5, 9)
        ax_azi_on = f.add_subplot(4, 5, 10)
        if len(df_on) > 0:
            dt.plot_roi_retinotopy(
save_folder = os.path.join(
    save_folder, '{}_DistanceThr_{:.2f}'.format(trace_window, distance_thr))
if not os.path.isdir(save_folder):
    os.makedirs(save_folder)

nwb_fns = [f for f in os.listdir(nwb_folder) if f[-4:] == '.nwb']
nwb_fns.sort()

bc = dt.BoutonClassifier(skew_filter_sigma=skew_filter_sigma,
                         skew_thr=skew_thr,
                         lowpass_sigma=lowpass_sigma,
                         detrend_sigma=detrend_sigma,
                         event_std_thr=event_std_thr,
                         peri_event_dur=peri_event_dur,
                         corr_len_thr=corr_len_thr,
                         corr_abs_thr=corr_abs_thr,
                         corr_std_thr=corr_std_thr,
                         is_cosine_similarity=is_cosine_similarity,
                         distance_metric=distance_metric,
                         linkage_method=linkage_method,
                         distance_thr=distance_thr)

for nwb_fi, nwb_fn in enumerate(nwb_fns):

    print('processing {}, {}/{}'.format(nwb_fn, nwb_fi + 1, len(nwb_fns)))

    nwb_f = h5py.File(os.path.join(nwb_folder, nwb_fn), 'r')

    plane_ns = dt.get_plane_ns(nwb_f=nwb_f)
    plane_ns.sort()
Esempio n. 8
0
import matplotlib.pyplot as plt

nwb_folder = 'nwbs'
nwb_fn = "190326_M441626_110.nwb"

plane_n = 'plane2'
roi_n = 'roi_0001'

analysis_params = dt.ANALYSIS_PARAMS
plot_params = dt.PLOTTING_PARAMS

analysis_params['trace_type'] = 'f_center_raw'
analysis_params['response_window_dgc'] = [0.5, 1.5]
analysis_params['baseline_window_dgc'] = [-0.5, 0.5]
plot_params['sftf_vmax'] = 6
plot_params['sftf_vmin'] = -6

curr_folder = os.path.dirname(os.path.realpath(__file__))
os.chdir(curr_folder)

nwb_f = h5py.File(os.path.join(nwb_folder, nwb_fn), 'r')
f = dt.roi_page_report(nwb_f=nwb_f,
                       plane_n=plane_n,
                       roi_n=roi_n,
                       params=analysis_params,
                       plot_params=plot_params)
nwb_f.close()

plt.show()

f.savefig('{}_{}_{}.pdf'.format(os.path.splitext(nwb_fn)[0], plane_n, roi_n))
import os
import h5py
import corticalmapping.DatabaseTools as dt
import corticalmapping.HighLevel as hl
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
overlap_ratio = 0.5
trace_type = 'f_center_raw'
save_folder = 'figures'
size_thr = 20.  # um^2
curr_folder = os.path.dirname(os.path.realpath(__file__))
os.chdir(curr_folder)
save_folder = os.path.join(curr_folder, save_folder)
if not os.path.isdir(save_folder):
    os.makedirs(save_folder)
nwb_fn = [fn for fn in os.listdir(curr_folder) if fn[-4:] == '.nwb']
if len(nwb_fn) == 0:
    raise LookupError('cannot find .nwb file.')
elif len(nwb_fn) > 1:
    raise LookupError('more than one .nwb files found.')
nwb_fn = nwb_fn[0]
nwb_f = h5py.File(os.path.join(curr_folder, nwb_fn), 'r')
pdf_path = os.path.join(
    save_folder,
    r'overlapping_rois_{}.pdf'.format(os.path.splitext(nwb_fn)[0]))
pdff = PdfPages(pdf_path)
roi_triplets = dt.get_roi_triplets(nwb_f=nwb_f,
                                   overlap_ratio=overlap_ratio,
                                   size_thr=size_thr)
for i, roi_triplet in enumerate(roi_triplets):
                  (subdf['rf_{}_off_peak_z'.format(response_dir)] >= analysis_params['rf_z_thr_abs'])].reset_index()

    if len(s2_df) > 0:
        s2_grp = save_f.create_group('{}_{}_{}_{}_ONOFF'.format(date, mid, plane_n, response_dir))
        s1_on_grp = save_f.create_group('{}_{}_{}_{}_ON'.format(date, mid, plane_n, response_dir))
        s1_off_grp = save_f.create_group('{}_{}_{}_{}_OFF'.format(date, mid, plane_n, response_dir))

        for roi_i, roi_row in s2_df.iterrows():

            print('\t s2 receptive fields, {}, {} / {} ...'.format(roi_row['roi_n'], roi_i + 1, len(s2_df)))

            if response_dir == 'pos':
                _, _, _, srf_on, srf_off, _, _, _, _, _, _, _, _, \
                _ = dt.get_everything_from_axon(nwb_f=nwb_f,
                                                clu_f=clu_f,
                                                plane_n=plane_n,
                                                axon_n=roi_row['roi_n'],
                                                params=analysis_params)

                _, rf_on_new = dt.get_rf_properties(srf=srf_on,
                                                    polarity='positive',
                                                    sigma=analysis_params['gaussian_filter_sigma_rf'],
                                                    interpolate_rate=analysis_params['interpolate_rate_rf'],
                                                    z_thr_abs=analysis_params['rf_z_thr_abs'],
                                                    z_thr_rel=analysis_params['rf_z_thr_rel'])

                _, rf_off_new = dt.get_rf_properties(srf=srf_off,
                                                     polarity='positive',
                                                     sigma=analysis_params['gaussian_filter_sigma_rf'],
                                                     interpolate_rate=analysis_params['interpolate_rate_rf'],
                                                     z_thr_abs=analysis_params['rf_z_thr_abs'],
Esempio n. 11
0
            local_grp.attrs['trace_type'] = sheet_name
            local_grp.attrs['response_dir'] = response_dir
            local_grp.attrs['skew_thr'] = 0.6
            local_grp.attrs['trace_bias'] = trace_bias
            local_grp.attrs['rf_peak_z_thr'] = rf_peak_z_thr
            local_grp.attrs['gaussian_filter_sigma'] = gaussian_filter_sigma
            local_grp.attrs['interpolation_rate'] = interpolate_rate
            local_grp.attrs['response_window'] = response_window

        print('\t\tprocessing roi {}/{} ...'.format(roi_i + 1, len(localdfon)))

        if roi_row['roi_n'] not in local_grp.keys():

            # get constant to add to trace
            trace, _ = dt.get_single_trace(nwb_f=nwb_f,
                                           plane_n=roi_row['plane_n'],
                                           roi_n=roi_row['roi_n'],
                                           trace_type=sheet_name)
            if np.min(trace) < trace_bias:
                add_to_trace = -np.min(trace) + trace_bias
            else:
                add_to_trace = 0.

            # get strf
            curr_strf = dt.get_strf(nwb_f=nwb_f,
                                    plane_n=roi_row['plane_n'],
                                    roi_ind=int(roi_row['roi_n'][-4:]),
                                    trace_type='sta_'+sheet_name)
            curr_strf_dff = curr_strf.get_local_dff_strf(is_collaps_before_normalize=True,
                                                         add_to_trace=add_to_trace)
            curr_srf, _ = curr_strf_dff.get_zscore_receptive_field(timeWindow=response_window)
            if response_dir == 'pos':
Esempio n. 12
0
curr_folder = os.path.dirname(os.path.realpath(__file__))
os.chdir(curr_folder)

db_df = pd.read_excel(summary_fn, sheet_name=sheet_n)
print(db_df.head())

pdf_fn = 'page_report_{}.pdf'.format(
    datetime.datetime.now().strftime('%y%m%d%H%M%S'))
pdff = PdfPages(pdf_fn)

for row_i, row in db_df.iterrows():
    # if row['roi_area'] >= area_lim and row['skew_fil'] >= 0.5:
    if row['roi_area'] >= area_lim:

        print('{}_{}; {}; {}'.format(row['date'], row['mouse_id'],
                                     row['plane_n'], row['roi_n']))

        nwb_fn = '{}_{}_110.nwb'.format(row['date'], row['mouse_id'])
        nwb_f = h5py.File(os.path.join(nwb_folder, nwb_fn), 'r')

        f = dt.roi_page_report(nwb_f=nwb_f,
                               plane_n=row['plane_n'],
                               roi_n=row['roi_n'],
                               params=params,
                               plot_params=plot_params)
        nwb_f.close()
        pdff.savefig(f)
        f.clear()
        plt.close()

pdff.close()
Esempio n. 13
0
def process_one_nwb_for_multi_thread(inputs):

    nwb_path, df_folder, clu_folder, params, columns, save_folder, t0, nwb_i, nwb_f_num, is_overwrite = inputs

    nwb_fn = os.path.splitext(os.path.split(nwb_path)[1])[0]

    date, mid, _, _ = nwb_fn.split('_')

    nwb_f = h5py.File(nwb_path, 'r')
    plane_ns = dt.get_plane_ns(nwb_f=nwb_f)
    plane_ns.sort()

    for plane_n in plane_ns:
        print('\tt: {:5.0f} minutes, processing {}, {} / {}, {} ...'.format(
            (time.time() - t0) / 60., nwb_fn, nwb_i + 1, nwb_f_num, plane_n))

        roi_df_fn = '{}_{}_{}.csv'.format(date, mid, plane_n)
        roi_df = pd.read_csv(os.path.join(df_folder, roi_df_fn))

        clu_fn = '{}_{}_{}_axon_grouping.hdf5'.format(date, mid, plane_n)
        clu_f = h5py.File(os.path.join(clu_folder, clu_fn), 'r')

        axon_ns = clu_f['axons'].keys()
        axon_ns.sort()

        axon_df = pd.DataFrame(np.nan,
                               index=range(len(axon_ns)),
                               columns=columns)

        for axon_i, axon_n in enumerate(axon_ns):

            roi_lst = clu_f['axons/{}'.format(axon_n)].value

            if len(roi_lst) == 1:
                curr_roi_df = roi_df[roi_df['roi_n'] ==
                                     roi_lst[0]].reset_index()
                for col in columns:
                    axon_df.loc[axon_i, col] = curr_roi_df.loc[0, col]
                axon_df.loc[axon_i, 'roi_n'] = axon_n
            else:
                axon_properties, _, _, _, _, _, _, _, _, _, _, _, _, _ = \
                                dt.get_everything_from_axon(nwb_f=nwb_f,
                                                            clu_f=clu_f,
                                                            plane_n=plane_n,
                                                            axon_n=axon_n,
                                                            params=params,
                                                            verbose=False)
                for rp_name, rp_value in axon_properties.items():
                    axon_df.loc[axon_i, rp_name] = rp_value

        save_path = os.path.join(save_folder,
                                 '{}_{}_{}.csv'.format(date, mid, plane_n))

        if os.path.isfile(save_path):
            if is_overwrite:
                os.remove(save_path)
                axon_df.to_csv(save_path)
            else:
                raise IOError(
                    'Axon dataframe file already exists. \npath: {}'.format(
                        save_path))
        else:
            axon_df.to_csv(save_path)
Esempio n. 14
0
import os
import h5py
import corticalmapping.DatabaseTools as dt

nwb_folder = "nwbs"
clu_folder = r"intermediate_results\bouton_clustering\AllStimuli_DistanceThr_1.30"
strf_t_win = [-0.5, 2.]

curr_folder = os.path.dirname(os.path.realpath(__file__))
os.chdir(curr_folder)

clu_fns = [f for f in os.listdir(clu_folder) if f[-5:] == '.hdf5']
clu_fns.sort()
print('total number of planes: {}'.format(len(clu_fns)))

for clu_fi, clu_fn in enumerate(clu_fns):

    date, mid, plane_n, _, _ = clu_fn.split('_')

    print('processing {}_{}_{}, {} / {}'.format(date, mid, plane_n, clu_fi + 1, len(clu_fns)))

    nwb_fn = '{}_{}_110_repacked.nwb'.format(date, mid)
    nwb_f = h5py.File(os.path.join(nwb_folder, nwb_fn), 'r')

    clu_f = h5py.File(os.path.join(clu_folder, clu_fn))

    bc = dt.BoutonClassifier()
    bc.add_axon_strf(nwb_f=nwb_f, clu_f=clu_f, plane_n=plane_n, t_win=strf_t_win, verbose=False)

    nwb_f.close()
    clu_f.close()
    # positive spatial receptive fields
    srf_on, srf_off = strf_dff.get_zscore_receptive_field(timeWindow=[0., 0.5])

    srf = srf_on.gaussian_filter(sigma=1.)
    srf = srf.interpolate(ratio=10.)

    print(np.max(srf.weights))


f_o = h5py.File(fn_original, 'r')
strf_o = sca.SpatialTemporalReceptiveField.from_h5_group(
    f_o['analysis/STRFs/plane0/strf_roi_{:04d}'.format(roi_ind)])
print_peak_z(strf_o)
# print(strf_o.data['traces'][0][5])
# print(strf_o.time)
f_o.close()

f_r = h5py.File(os.path.join('repacked', fn_repacked), 'r')
strf_r = dt.get_strf(f_r,
                     plane_n='plane0',
                     roi_ind=0,
                     trace_type='sta_f_center_subtracted')
print_peak_z(strf_r)
# print(strf_r.data['traces'][0][5])
# print(strf_r.time)

roi_properties, _, _, _, _, _, _, _, _, _, _, _, _, _ = \
                        dt.get_everything_from_roi(nwb_f=f_r, plane_n='plane0', roi_n=roi_n, params=params)
print(roi_properties['rf_pos_on_peak_z'])

f_r.close()
nwb_fn = [fn for fn in os.listdir(curr_folder) if fn[-4:] == '.nwb']
if len(nwb_fn) == 0:
    raise LookupError('cannot find .nwb file.')
elif len(nwb_fn) > 1:
    raise LookupError('more than one .nwb files found.')

nwb_fn = nwb_fn[0]

pdf_path = os.path.join(
    save_folder, r'page_report_{}.pdf'.format(os.path.splitext(nwb_fn)[0]))
pdff = PdfPages(pdf_path)

nwb_f = h5py.File(nwb_fn, 'r')

plane_ns = dt.get_plane_ns(nwb_f)

for plane_n in plane_ns:

    roi_ns = dt.get_roi_ns(nwb_f, plane_n)

    for roi_n in roi_ns:

        roi = dt.get_roi(nwb_f, plane_n, roi_n)

        if roi.get_binary_area() >= area_lim:

            print('plotting {}; {}; {}'.format(nwb_fn, plane_n, roi_n))

            f = dt.roi_page_report(nwb_f=nwb_f,
                                   plane_n=plane_n,