def __init__(self, n_groups=1, pool_size=0.0): ''' Parameters ---------- n_groups: int Number of groups in the population. pool_size: float Upperbound on the range of the existing population groups. A random value from 0 to the upperbound value will be assigned to each group. ''' super().__init__() self.port_names_expected = [ 'probation', 'adjudication', 'arrested', 'prison', 'community' ] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * unit.day self.end_time = 100 * unit.day self.time_step = 0.5 * unit.day unit.month = 30 * unit.day unit.percent = 1 / 100 # Population groups self.n_groups = n_groups # Jail population groups fjg_0 = np.random.random(self.n_groups) * pool_size fjg = Quantity(name='fjg', formal_name='jail-pop-grps', latex_name='$n_j^{(g)}$', unit='# offenders', value=fjg_0, info='Jail Population Groups') quantities.append(fjg) # Model parameters: commitment coefficients # Jail to community a = 35 * unit.percent / unit.year * np.ones(self.n_groups) b = 40 * unit.percent / unit.year * np.ones(self.n_groups) cj0g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups cj0g = Quantity(name='cj0g', formal_name='commit-community-coeff-grps', unit='1/s', value=cj0g_0) self.ode_params['commit-to-community-coeff-grps'] = cj0g_0 quantities.append(cj0g) # Jail to prison a = 60 * unit.percent / unit.year * np.ones(self.n_groups) b = 65 * unit.percent / unit.year * np.ones(self.n_groups) cjpg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups cjpg = Quantity(name='cjpg', formal_name='commit-prison-coeff-grps', unit='1/s', value=cjpg_0) self.ode_params['commit-to-prison-coeff-grps'] = cjpg_0 quantities.append(cjpg) # Death term a = 0.5 * unit.percent / unit.year * np.ones(self.n_groups) b = 0.6 * unit.percent / unit.year * np.ones(self.n_groups) djg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups self.ode_params['jail-death-rates-coeff'] = djg_0 # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('fjg', fjg_0, self.initial_time) # Initialize inflows to zero self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['probation-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups) return
class Jail(Module): ''' Jail Cortix module used to model criminal group population in a jail. Notes ----- These are the `port` names available in this module to connect to respective modules: `probation`, `adjudication`, `arrested`, `prison`, and `community`. See instance attribute `port_names_expected`. ''' def __init__(self, n_groups=1, pool_size=0.0): ''' Parameters ---------- n_groups: int Number of groups in the population. pool_size: float Upperbound on the range of the existing population groups. A random value from 0 to the upperbound value will be assigned to each group. ''' super().__init__() self.port_names_expected = [ 'probation', 'adjudication', 'arrested', 'prison', 'community' ] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * unit.day self.end_time = 100 * unit.day self.time_step = 0.5 * unit.day unit.month = 30 * unit.day unit.percent = 1 / 100 # Population groups self.n_groups = n_groups # Jail population groups fjg_0 = np.random.random(self.n_groups) * pool_size fjg = Quantity(name='fjg', formal_name='jail-pop-grps', latex_name='$n_j^{(g)}$', unit='# offenders', value=fjg_0, info='Jail Population Groups') quantities.append(fjg) # Model parameters: commitment coefficients # Jail to community a = 35 * unit.percent / unit.year * np.ones(self.n_groups) b = 40 * unit.percent / unit.year * np.ones(self.n_groups) cj0g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups cj0g = Quantity(name='cj0g', formal_name='commit-community-coeff-grps', unit='1/s', value=cj0g_0) self.ode_params['commit-to-community-coeff-grps'] = cj0g_0 quantities.append(cj0g) # Jail to prison a = 60 * unit.percent / unit.year * np.ones(self.n_groups) b = 65 * unit.percent / unit.year * np.ones(self.n_groups) cjpg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups cjpg = Quantity(name='cjpg', formal_name='commit-prison-coeff-grps', unit='1/s', value=cjpg_0) self.ode_params['commit-to-prison-coeff-grps'] = cjpg_0 quantities.append(cjpg) # Death term a = 0.5 * unit.percent / unit.year * np.ones(self.n_groups) b = 0.6 * unit.percent / unit.year * np.ones(self.n_groups) djg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups self.ode_params['jail-death-rates-coeff'] = djg_0 # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('fjg', fjg_0, self.initial_time) # Initialize inflows to zero self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['probation-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups) return def run(self, *args): self.__zero_ode_parameters() time = self.initial_time while time <= self.end_time: # Interactions in the prison port #-------------------------------- # one way "to" prison message_time = self.recv('prison') outflow_rates = self.__compute_outflow_rates( message_time, 'prison') self.send((message_time, outflow_rates), 'prison') # Interactions in the adjudication port #------------------------------------ # one way "from" adjudication self.send(time, 'adjudication') (check_time, adjudication_inflow_rates) = self.recv('adjudication') assert abs(check_time - time) <= 1e-6 self.ode_params[ 'adjudication-inflow-rates'] = adjudication_inflow_rates # Interactions in the arrested port #---------------------------------- # one way "from" arrested self.send(time, 'arrested') (check_time, arrested_inflow_rates) = self.recv('arrested') assert abs(check_time - time) <= 1e-6 self.ode_params['arrested-inflow-rates'] = arrested_inflow_rates # Interactions in the probation port #----------------------------------- # one way "from" probation self.send(time, 'probation') (check_time, probation_inflow_rates) = self.recv('probation') assert abs(check_time - time) <= 1e-6 self.ode_params['probation-inflow-rates'] = probation_inflow_rates # Interactions in the community port #------------------------------ # one way "to" community message_time = self.recv('community') outflow_rates = self.__compute_outflow_rates( message_time, 'community') self.send((message_time, outflow_rates), 'community') # Evolve jail group population to the next time stamp #---------------------------------------------------- time = self.__step(time) def __rhs_fn(self, u_vec, t, params): fjg = u_vec # jail population groups arrested_inflow_rates = params['arrested-inflow-rates'] probation_inflow_rates = params['probation-inflow-rates'] adjudication_inflow_rates = params['adjudication-inflow-rates'] inflow_rates = arrested_inflow_rates + probation_inflow_rates + \ adjudication_inflow_rates cj0g = self.ode_params['commit-to-community-coeff-grps'] cjpg = self.ode_params['commit-to-prison-coeff-grps'] outflow_rates = (cj0g + cjpg) * fjg death_rates_coeff = params['jail-death-rates-coeff'] death_rates = death_rates_coeff * fjg dt_fjg = inflow_rates - outflow_rates - death_rates return dt_fjg def __step(self, time=0.0): r''' ODE IVP problem: Given the initial data at :math:`t=0`, :math:`u = (u_1(0),u_2(0),\ldots)` solve :math:`\frac{\text{d}u}{\text{d}t} = f(u)` in the interval :math:`0\le t \le t_f`. Parameters ---------- time: float Time in SI unit. Returns ------- None ''' u_vec_0 = self.population_phase.GetValue('fjg', time) t_interval_sec = np.linspace(0.0, self.time_step, num=2) (u_vec_hist, info_dict) = odeint(self.__rhs_fn, u_vec_0, t_interval_sec, args=(self.ode_params, ), rtol=1e-4, atol=1e-8, mxstep=200, full_output=True) assert info_dict['message'] == 'Integration successful.', info_dict[ 'message'] u_vec = u_vec_hist[1, :] # solution vector at final time step values = self.population_phase.GetRow(time) # values at previous time time += self.time_step self.population_phase.AddRow(time, values) # Update current values self.population_phase.SetValue('fjg', u_vec, time) return time def __compute_outflow_rates(self, time, name): fjg = self.population_phase.GetValue('fjg', time) assert np.all(fjg >= 0.0), 'values: %r' % fjg if name == 'prison': cjpg = self.ode_params['commit-to-prison-coeff-grps'] outflow_rates = cjpg * fjg if name == 'community': cj0g = self.ode_params['commit-to-community-coeff-grps'] outflow_rates = cj0g * fjg return outflow_rates def __zero_ode_parameters(self): ''' If ports are not connected the corresponding outflows must be zero. ''' zeros = np.zeros(self.n_groups) p_names = [p.name for p in self.ports] if 'community' not in p_names: self.ode_params['commit-to-community-coeff-grps'] = zeros if 'prison' not in p_names: self.ode_params['commit-to-prison-coeff-grps'] = zeros return
def __init__(self, n_groups=1, pool_size=0.0): ''' Parameters ---------- n_groups: int Number of groups in the population. pool_size: float Upperbound on the range of the existing population groups. A random value from 0 to the upperbound value will be assigned to each group. ''' super().__init__() self.port_names_expected = ['parole','adjudication','jail','community'] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * unit.day self.end_time = 100 * unit.day self.time_step = 0.5 * unit.day unit.percent = 1/100 # Population groups self.n_groups = n_groups # Prison population groups fpg_0 = np.random.random(self.n_groups) * pool_size fpg = Quantity(name='npg', formal_name='prison-pop-grps', latex_name = '$n_p^{(g)}$', unit='# offenders', value=fpg_0, info='Prison Population Groups') quantities.append(fpg) # Model parameters: commitment coefficients # Prison to community a = 10*unit.percent/unit.year * np.ones(self.n_groups) b = 15*unit.percent/unit.year * np.ones(self.n_groups) cp0g_0 = (a + (b-a)*np.random.random(self.n_groups)) / self.n_groups cp0g = Quantity(name='cp0g', formal_name='commit-community-coeff-grps', unit='1/s', value=cp0g_0) self.ode_params['commit-to-community-coeff-grps'] = cp0g_0 quantities.append(cp0g) # Prison to parole a = 20*unit.percent/unit.year * np.ones(self.n_groups) b = 25*unit.percent/unit.year * np.ones(self.n_groups) cpeg_0 = (a + (b-a)*np.random.random(self.n_groups)) / self.n_groups cpeg = Quantity(name='cpeg', formal_name='commit-parole-coeff-grps', unit='1/s', value=cpeg_0) self.ode_params['commit-to-parole-coeff-grps'] = cpeg_0 quantities.append(cpeg) # Death term a = 0.8*unit.percent/unit.year * np.ones(self.n_groups) b = 0.9*unit.percent/unit.year * np.ones(self.n_groups) dpg_0 = (a + (b-a)*np.random.random(self.n_groups)) / self.n_groups self.ode_params['death-rates-coeff'] = dpg_0 # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('npg', fpg_0, self.initial_time) # Initialize inflows to zero self.ode_params['parole-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['jail-inflow-rates'] = np.zeros(self.n_groups) return
def __init__(self, n_groups=1, pool_size=0.0): super().__init__() self.port_names_expected = ['prison','community'] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * unit.day self.end_time = 100 * unit.day self.time_step = 0.5 * unit.day unit.percent = 1/100 # Population groups self.n_groups = n_groups # Parole population groups feg_0 = np.random.random(self.n_groups) * pool_size feg = Quantity(name='feg', formal_name='parole-pop-grps', latex_name = '$n_e^{(g)}$', unit='# offenders', value=feg_0, info='Parole Population Groups') quantities.append(feg) # Model parameters: commitment coefficients # Parole to community a = 50*unit.percent/unit.year * np.ones(self.n_groups) b = 70*unit.percent/unit.year * np.ones(self.n_groups) ce0g_0 = (a + (b-a)*np.random.random(self.n_groups)) / self.n_groups ce0g = Quantity(name='ce0g', formal_name='commit-community-coeff-grps', unit='1/s', value=ce0g_0) self.ode_params['commit-to-community-coeff-grps'] = ce0g_0 quantities.append(ce0g) # Parole to prison a = 30*unit.percent/unit.year * np.ones(self.n_groups) b = 40*unit.percent/unit.year * np.ones(self.n_groups) cepg_0 = (a + (b-a)*np.random.random(self.n_groups)) / self.n_groups cepg = Quantity(name='cepg', formal_name='commit-prison-coeff-grps', unit='1/s', value=cepg_0) self.ode_params['commit-to-prison-coeff-grps'] = cepg_0 quantities.append(cepg) # Death term a = 0.5*unit.percent/unit.year * np.ones(self.n_groups) b = 0.8*unit.percent/unit.year * np.ones(self.n_groups) deg_0 = (a + (b-a)*np.random.random(self.n_groups)) / self.n_groups self.ode_params['parole-death-rates-coeff'] = deg_0 # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('feg', feg_0, self.initial_time) # Initialize inflows to zero self.ode_params['prison-inflow-rates'] = np.zeros(self.n_groups) return
def __init__(self, n_groups=1, non_offender_adult_population=100, offender_pool_size=0.0, free_offender_pool_size=0.0): """Constructor. Parameters ---------- n_groups: int Number of groups in the population. non_offender_adult_population: float Pool of individuals reaching the adult age (SI) unit. Default: 100. offender_pool_size: float Upperbound on the range of the existing population groups. A random value from 0 to the upperbound value will be assigned to each group. This is typically a small number, say a fraction of a percent. """ super().__init__() self.port_names_expected = [ 'probation', 'adjudication', 'jail', 'prison', 'arrested', 'parole' ] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * unit.day self.end_time = 100 * unit.day self.time_step = 0.5 * unit.day self.show_time = (False, 10 * unit.day) self.log = logging.getLogger('cortix') unit.percent = 1 / 100 # Population groups self.n_groups = n_groups # Community non-offender population n0_0 = np.array([float(non_offender_adult_population)]) n0 = Quantity(name='n0', formal_name='non-offender-adult-pop', latex_name='$n_0$', unit='# adults', value=n0_0, info='Non-Offender Adult Population') quantities.append(n0) # Community free-offender population groups f0g_0 = np.random.random(self.n_groups) * offender_pool_size f0g = Quantity(name='f0g', formal_name='free-offender-pop-grps', latex_name='$n_0^{(g)}$', unit='# offenders', value=f0g_0, info='Free-Offender Population Groups') quantities.append(f0g) # Model parameters: commitment coefficients # Community non-offenders to offenders (arrested) a = 0.6 * unit.percent / unit.year * np.ones(self.n_groups) b = 0.8 * unit.percent / unit.year * np.ones(self.n_groups) c00g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups c00g = Quantity(name='c00g', formal_name='non-offenders-commit-arrested-coeff-grps', unit='1/s', value=c00g_0) self.ode_params['non-offenders-commit-to-arrested-coeff-grps'] = c00g_0 quantities.append(c00g) # Community free-offenders to arrested (recidivism) a = 0.8 * unit.percent / unit.year * np.ones(self.n_groups) b = 0.9 * unit.percent / unit.year * np.ones(self.n_groups) c0rg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups c0rg = Quantity( name='c0rg', formal_name='free-offenders-commit-arrested-coeff-grps', value=c0rg_0, unit='1/s') self.ode_params[ 'free-offenders-commit-to-arrested-coeff-grps'] = c0rg_0 quantities.append(c0rg) # Death term for community offenders a = 0.8 * unit.percent / unit.year * np.ones(self.n_groups) b = 1.0 * unit.percent / unit.year * np.ones(self.n_groups) d0g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups self.ode_params['free-offenders-death-rates-coeff'] = d0g_0 # Death term for community non-offenders a = 0.5 * unit.percent / unit.year b = 1.0 * unit.percent / unit.year d0_0 = a + (b - a) * np.random.random() self.ode_params['non-offenders-death-rate-coeff'] = d0_0 # Maturity term for community non-offenders a = 1.5 * unit.percent / unit.year b = 2.5 * unit.percent / unit.year s0_0 = a + (b - a) * np.random.random() self.ode_params['non-offenders-maturity-rate-coeff'] = s0_0 self.ode_params[ 'non_offender_adult_population'] = non_offender_adult_population # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('n0', n0_0, self.initial_time) self.population_phase.SetValue('f0g', f0g_0, self.initial_time) # Initialize inflows to zero self.ode_params['prison-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['parole-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['jail-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['probation-inflow-rates'] = np.zeros(self.n_groups)
class Community(Module): """Community model with criminal group population. Community here is the system at large with all possible adult individuals included in any given society. Notes ----- These are the `port` names available in this module to connect to respective modules: + `probation`, + `adjudication`, + `jail`, `prison`, + `arrested`, and + `parole`. See instance attribute `port_names_expected`. """ def __init__(self, n_groups=1, non_offender_adult_population=100, offender_pool_size=0.0, free_offender_pool_size=0.0): """Constructor. Parameters ---------- n_groups: int Number of groups in the population. non_offender_adult_population: float Pool of individuals reaching the adult age (SI) unit. Default: 100. offender_pool_size: float Upperbound on the range of the existing population groups. A random value from 0 to the upperbound value will be assigned to each group. This is typically a small number, say a fraction of a percent. """ super().__init__() self.port_names_expected = [ 'probation', 'adjudication', 'jail', 'prison', 'arrested', 'parole' ] quantities = list() self.ode_params = dict() self.initial_time = 0.0 * unit.day self.end_time = 100 * unit.day self.time_step = 0.5 * unit.day self.show_time = (False, 10 * unit.day) self.log = logging.getLogger('cortix') unit.percent = 1 / 100 # Population groups self.n_groups = n_groups # Community non-offender population n0_0 = np.array([float(non_offender_adult_population)]) n0 = Quantity(name='n0', formal_name='non-offender-adult-pop', latex_name='$n_0$', unit='# adults', value=n0_0, info='Non-Offender Adult Population') quantities.append(n0) # Community free-offender population groups f0g_0 = np.random.random(self.n_groups) * offender_pool_size f0g = Quantity(name='f0g', formal_name='free-offender-pop-grps', latex_name='$n_0^{(g)}$', unit='# offenders', value=f0g_0, info='Free-Offender Population Groups') quantities.append(f0g) # Model parameters: commitment coefficients # Community non-offenders to offenders (arrested) a = 0.6 * unit.percent / unit.year * np.ones(self.n_groups) b = 0.8 * unit.percent / unit.year * np.ones(self.n_groups) c00g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups c00g = Quantity(name='c00g', formal_name='non-offenders-commit-arrested-coeff-grps', unit='1/s', value=c00g_0) self.ode_params['non-offenders-commit-to-arrested-coeff-grps'] = c00g_0 quantities.append(c00g) # Community free-offenders to arrested (recidivism) a = 0.8 * unit.percent / unit.year * np.ones(self.n_groups) b = 0.9 * unit.percent / unit.year * np.ones(self.n_groups) c0rg_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups c0rg = Quantity( name='c0rg', formal_name='free-offenders-commit-arrested-coeff-grps', value=c0rg_0, unit='1/s') self.ode_params[ 'free-offenders-commit-to-arrested-coeff-grps'] = c0rg_0 quantities.append(c0rg) # Death term for community offenders a = 0.8 * unit.percent / unit.year * np.ones(self.n_groups) b = 1.0 * unit.percent / unit.year * np.ones(self.n_groups) d0g_0 = (a + (b - a) * np.random.random(self.n_groups)) / self.n_groups self.ode_params['free-offenders-death-rates-coeff'] = d0g_0 # Death term for community non-offenders a = 0.5 * unit.percent / unit.year b = 1.0 * unit.percent / unit.year d0_0 = a + (b - a) * np.random.random() self.ode_params['non-offenders-death-rate-coeff'] = d0_0 # Maturity term for community non-offenders a = 1.5 * unit.percent / unit.year b = 2.5 * unit.percent / unit.year s0_0 = a + (b - a) * np.random.random() self.ode_params['non-offenders-maturity-rate-coeff'] = s0_0 self.ode_params[ 'non_offender_adult_population'] = non_offender_adult_population # Phase state self.population_phase = Phase(self.initial_time, time_unit='s', quantities=quantities) self.population_phase.SetValue('n0', n0_0, self.initial_time) self.population_phase.SetValue('f0g', f0g_0, self.initial_time) # Initialize inflows to zero self.ode_params['prison-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['parole-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['arrested-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['jail-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['adjudication-inflow-rates'] = np.zeros(self.n_groups) self.ode_params['probation-inflow-rates'] = np.zeros(self.n_groups) def run(self, *args): self.__zero_ode_parameters() time = self.initial_time while time <= self.end_time: if self.show_time[0] and abs(time % self.show_time[1] - 0.0) <= 1.e-1: self.log.info('Community::time[d] = ' + str(round(time / unit.day, 1))) self.__call_ports(time) # Evolve offenders group population to the next time stamp #--------------------------------------------------------- time = self.__step(time) def __call_ports(self, time): # Interactions in the jail port #-------------------------------- # one way "from" jail self.send(time, 'jail') (check_time, inflow_rates) = self.recv('jail') assert abs(check_time - time) <= 1e-6 self.ode_params['jail-inflow-rates'] = inflow_rates # Interactions in the adjudication port #-------------------------------------- # one way "from" adjudication self.send(time, 'adjudication') (check_time, inflow_rates) = self.recv('adjudication') assert abs(check_time - time) <= 1e-6 self.ode_params['adjudication-inflow-rates'] = inflow_rates # Interactions in the probation port #-------------------------------- # one way "from" probation self.send(time, 'probation') (check_time, inflow_rates) = self.recv('probation') assert abs(check_time - time) <= 1e-6 self.ode_params['probation-inflow-rates'] = inflow_rates # Interactions in the prison port #-------------------------------- # one way "from" prison self.send(time, 'prison') (check_time, inflow_rates) = self.recv('prison') assert abs(check_time - time) <= 1e-6 self.ode_params['prison-inflow-rates'] = inflow_rates # Interactions in the parole port #-------------------------------- # one way "from" parole self.send(time, 'parole') (check_time, inflow_rates) = self.recv('parole') assert abs(check_time - time) <= 1e-6 self.ode_params['parole-inflow-rates'] = inflow_rates # Interactions in the arrested port #-------------------------------- # two way "to" and "from" arrested # to message_time = self.recv('arrested') outflow_rates = self.__compute_outflow_rates(message_time, 'arrested') self.send((message_time, outflow_rates), 'arrested') # from self.send(time, 'arrested') (check_time, inflow_rates) = self.recv('arrested') assert abs(check_time - time) <= 1e-6 self.ode_params['arrested-inflow-rates'] = inflow_rates def __step(self, time=0.0): r''' ODE IVP problem: Given the initial data at :math:`t=0`, :math:`u = (u_1(0),u_2(0),\ldots)` solve :math:`\frac{\text{d}u}{\text{d}t} = f(u)` in the interval :math:`0\le t \le t_f`. Parameters ---------- time: float Time in SI unit. Returns ------- None ''' # Get state values a_vec = self.population_phase.GetValue('n0', time) b_vec = self.population_phase.GetValue('f0g', time) u_0 = np.concatenate((a_vec, b_vec)) t_interval_sec = np.linspace(0.0, self.time_step, num=2) (u_vec_hist, info_dict) = odeint(self.__rhs_fn, u_0, t_interval_sec, args=(self.ode_params, ), rtol=1e-4, atol=1e-8, mxstep=200, full_output=True) assert info_dict['message'] == 'Integration successful.', info_dict[ 'message'] u_vec = u_vec_hist[1, :] # solution vector at final time step time += self.time_step # Update state variables values = self.population_phase.GetRow() # values existing values self.population_phase.AddRow( time, values) # copy on new time for convenience self.population_phase.SetValue('n0', u_vec[:1], time) # insert new values self.population_phase.SetValue('f0g', u_vec[1:], time) # insert new values return time def __rhs_fn(self, u_vec, t, params): n0 = u_vec[:1] # non-offender population # source of non-offenders s0_coeff = params['non-offenders-maturity-rate-coeff'] n0_0 = params['non_offender_adult_population'] s0 = s0_coeff * n0_0 # outflow rate to Arrested c00g = params['non-offenders-commit-to-arrested-coeff-grps'] outflow_rate = np.sum(c00g * n0) # death rate death_rate_coeff = params['non-offenders-death-rate-coeff'] death_rate = death_rate_coeff * n0 dt_n0 = s0 - outflow_rate - death_rate f0g = u_vec[1:] # free-offender population groups prison_inflow_rates = params['prison-inflow-rates'] parole_inflow_rates = params['parole-inflow-rates'] arrested_inflow_rates = params['arrested-inflow-rates'] jail_inflow_rates = params['jail-inflow-rates'] adjudication_inflow_rates = params['adjudication-inflow-rates'] probation_inflow_rates = params['probation-inflow-rates'] # free-offenders inflows inflow_rates = prison_inflow_rates + parole_inflow_rates +\ arrested_inflow_rates + jail_inflow_rates +\ adjudication_inflow_rates + probation_inflow_rates assert np.all(inflow_rates >= 0.0), 'values: %r' % inflow_rates c0rg = params['free-offenders-commit-to-arrested-coeff-grps'] # free-offenders outflow (recidivism) outflow_rates = c0rg * f0g assert np.all(outflow_rates >= 0.0), 'values: %r' % outflow_rates death_rates_coeff = params['free-offenders-death-rates-coeff'] death_rates = death_rates_coeff * f0g assert np.all(death_rates >= 0.0), 'values: %r' % death_rates dt_f0g = inflow_rates - outflow_rates - death_rates dt_u = np.concatenate((dt_n0, dt_f0g)) return dt_u def __compute_outflow_rates(self, time, name): n0 = self.population_phase.GetValue('n0', time) f0g = self.population_phase.GetValue('f0g', time) if name == 'arrested': c0rg = self.ode_params[ 'free-offenders-commit-to-arrested-coeff-grps'] c00g = self.ode_params[ 'non-offenders-commit-to-arrested-coeff-grps'] # Recidivism and new offenders outflow_rates = c0rg * f0g + c00g * n0 return outflow_rates def __zero_ode_parameters(self): ''' If ports are not connected the corresponding outflows must be zero. ''' zeros = np.zeros(self.n_groups) p_names = [p.name for p in self.ports] if 'arrested' not in p_names: self.ode_params['commit-to-arrested-coeff-grps'] = zeros self.ode_params['general-commit-to-arrested-coeff-grps'] = zeros return