Esempio n. 1
0
def test_const_match(w0_test, cosmo_input):
    """test w_matcher gets constant w cosmology correct"""
    cosmo_start = cosmo_input[0]
    wm = cosmo_input[3]
    zs = cosmo_input[5]

    w_use_int = w0_test
    cosmo_match_a = cosmo_start.copy()
    cosmo_match_a['de_model'] = 'jdem'
    cosmo_match_a['w0'] = w_use_int
    cosmo_match_a['wa'] = 0.
    cosmo_match_a['w'] = w_use_int
    for i in range(0, 36):
        cosmo_match_a['ws36_' + str(i).zfill(2)] = w_use_int

    cosmo_match_b = cosmo_match_a.copy()
    cosmo_match_b['de_model'] = 'w0wa'

    cosmo_match_c = cosmo_match_a.copy()
    cosmo_match_c['de_model'] = 'constant_w'

    C_match_a = cp.CosmoPie(cosmology=cosmo_match_a, p_space='jdem')
    C_match_b = cp.CosmoPie(cosmology=cosmo_match_b, p_space='jdem')
    C_match_c = cp.CosmoPie(cosmology=cosmo_match_c, p_space='jdem')

    w_a = wm.match_w(C_match_a, zs)
    w_b = wm.match_w(C_match_b, zs)
    w_c = wm.match_w(C_match_c, zs)

    mult_a = wm.match_growth(C_match_a, zs, w_a)
    mult_b = wm.match_growth(C_match_b, zs, w_b)
    mult_c = wm.match_growth(C_match_c, zs, w_c)

    error_a_1 = np.linalg.norm(w_a - C_match_a.de_object.w_of_z(zs)) / w_a.size
    error_a_2 = np.linalg.norm(w_use_int - w_a) / zs.size
    error_b_1 = np.linalg.norm(w_b - C_match_b.de_object.w_of_z(zs)) / w_b.size
    error_b_2 = np.linalg.norm(w_use_int - w_b) / zs.size
    error_c_1 = np.linalg.norm(w_c - C_match_c.de_object.w_of_z(zs)) / w_c.size
    error_c_2 = np.linalg.norm(w_use_int - w_c) / zs.size
    #should usually do more like 1.e-12 or better if no grid issues
    atol_loc = 1.e-10
    assert error_a_1 < atol_loc
    assert error_a_2 < atol_loc
    assert error_b_1 < atol_loc
    assert error_b_2 < atol_loc
    assert error_c_1 < atol_loc
    assert error_c_2 < atol_loc
    assert np.allclose(w_a, C_match_a.de_object.w_of_z(zs))
    assert np.allclose(w_b, C_match_b.de_object.w_of_z(zs))
    assert np.allclose(w_c, C_match_c.de_object.w_of_z(zs))
    assert np.allclose(w_a, w_use_int)
    assert np.allclose(w_b, w_use_int)
    assert np.allclose(w_c, w_use_int)
    assert np.allclose(mult_a, mult_b)
    assert np.allclose(mult_a, mult_c)
    assert np.allclose(mult_b, mult_c)
Esempio n. 2
0
    def __init__(self,C_fid,wmatcher_params):
        """ C_fid: the fiducial CosmoPie, w(z) irrelevant because it will be ignored
            wmatcher_params:
                w_step: resolution of w grid
                w_min: minimum w to consider
                w_max: maximum w to consider
                a_step: resolution of a grid
                a_min: minimum a to consider
                a_max: maximum a to consider
        """
        #appears only use of C_fid to extract cosmology
        #CosmoPie appears to be used to extract G_norm,G, and Ez
        self.C_fid = C_fid
        self.cosmo_fid = self.C_fid.cosmology.copy()
        self.cosmo_fid['w'] = -1.
        self.cosmo_fid['de_model'] = 'constant_w'

        self.w_step = wmatcher_params['w_step']
        self.w_min = wmatcher_params['w_min']
        self.w_max = wmatcher_params['w_max']
        self.ws = np.arange(self.w_min,self.w_max,self.w_step)
        self.n_w = self.ws.size

        self.a_step = wmatcher_params['a_step']
        self.a_min = wmatcher_params['a_min']
        self.a_max = wmatcher_params['a_max']
        self.a_s = np.arange(self.a_max,self.a_min-self.a_step/10.,-self.a_step)
        self.n_a = self.a_s.size

        self.zs = 1./self.a_s-1.
        self.cosmos = np.zeros(self.n_w,dtype=object)

        self.integ_Es = np.zeros((self.n_w,self.n_a))
        self.Gs = np.zeros((self.n_w,self.n_a))


        for i in range(0,self.n_w):
            self.cosmos[i] = self.cosmo_fid.copy()
            self.cosmos[i]['w'] = self.ws[i]
            C_i = cp.CosmoPie(cosmology=self.cosmos[i],p_space=self.cosmo_fid['p_space'],silent=True)
            E_as = C_i.Ez(self.zs)
            self.integ_Es[i] = cumtrapz(1./(self.a_s**2*E_as)[::-1],self.a_s[::-1],initial=0.)
            self.Gs[i] = C_i.G(self.zs)
        self.G_interp = RectBivariateSpline(self.ws,self.a_s[::-1],self.Gs[:,::-1],kx=3,ky=3)

        self.ind_switches = np.argmax(np.diff(self.integ_Es,axis=0)<0,axis=0)+1
        #there is a purely numerical issue that causes the integral to be non-monotonic, this loop eliminates the spurious behavior
        for i in range(1,self.n_a):
            if self.ind_switches[i]>1:
                if self.integ_Es[self.ind_switches[i]-1,i]-self.integ_Es[0,i]>=0:
                    self.integ_Es[0:(self.ind_switches[i]-1),i] = self.integ_Es[self.ind_switches[i]-1,i]
                else:
                    raise RuntimeError( "Nonmonotonic integral, solution is not unique at "+str(self.a_s[i]))

        self.integ_E_interp = RectBivariateSpline(self.ws,self.a_s[::-1],self.integ_Es,kx=3,ky=3)
Esempio n. 3
0
def test_jdem_w0wa_match(w0_test, wa_test, cosmo_input):
    """check w_matcher gets w0wa cosmology compatible with binned w(z) cosmology"""
    cosmo_start = cosmo_input[0]
    wm = cosmo_input[3]
    zs = cosmo_input[5]

    w0_use = w0_test
    wa_use = wa_test
    cosmo_match_w0wa = cosmo_start.copy()
    cosmo_match_jdem = cosmo_start.copy()
    cosmo_match_w0wa['de_model'] = 'w0wa'
    cosmo_match_w0wa['w0'] = w0_use
    cosmo_match_w0wa['wa'] = wa_use
    cosmo_match_w0wa['w'] = w0_use  #+0.9*wa_use

    cosmo_match_jdem['de_model'] = 'jdem'
    cosmo_match_jdem['w'] = w0_use + 0.9 * wa_use
    a_jdem = 1. - 0.025 * np.arange(0, 36)
    for i in range(0, 36):
        cosmo_match_jdem[
            'ws36_' +
            str(i).zfill(2)] = w0_use + (1. -
                                         (a_jdem[i] - 0.025 / 2.)) * wa_use

    C_match_w0wa = cp.CosmoPie(cosmology=cosmo_match_w0wa, p_space='jdem')
    C_match_jdem = cp.CosmoPie(cosmology=cosmo_match_jdem, p_space='jdem')

    w_w0wa = wm.match_w(C_match_w0wa, zs)
    w_jdem = wm.match_w(C_match_jdem, zs)
    mult_w0wa = wm.match_growth(C_match_w0wa, zs, w_w0wa)
    mult_jdem = wm.match_growth(C_match_jdem, zs, w_jdem)

    error_w0wa_jdem = np.linalg.norm(w_w0wa - w_jdem) / w_jdem.size
    error_mult_w0wa_jdem = np.linalg.norm(mult_w0wa - mult_jdem) / w_jdem.size
    assert error_w0wa_jdem < 4.e-4
    assert error_mult_w0wa_jdem < 1.e-3
def test_change_params():
    """test rotation function work"""
    C_fid = cp.CosmoPie(defaults.cosmology.copy(),'jdem')


    f_set_in1 = np.zeros(3,dtype=object)
    for i in range(0,3):
        f_set1 = np.random.rand(6,6)
        f_set1 = np.dot(f_set1.T,f_set1)
        f_set1 = f_set1+np.diag(np.random.rand(6))
        f_set_in1[i] = f_set1
    f_set_in2 = rotate_jdem_to_lihu(f_set_in1,C_fid)
    f_set_in3 = rotate_lihu_to_jdem(f_set_in2,C_fid)
    f_set_in4 = rotate_jdem_to_lihu(f_set_in3,C_fid)
    for i in range(0,3):
        assert np.allclose(f_set_in1[i],f_set_in3[i])
        assert np.allclose(f_set_in2[i],f_set_in4[i])
def test_vary_1_parameter(param_set, param_vary):
    """test variation of parameters for halofit and linear match expectations from camb"""
    atol_rel = 1.e-8
    rtol = 3.e-3
    eps = 0.1

    camb_params = defaults.camb_params.copy()

    camb_params['force_sigma8'] = param_set[0]
    camb_params['leave_h'] = param_set[1]
    power_params = defaults.power_params.copy()
    power_params.camb = camb_params

    cosmo_fid = defaults.cosmology.copy()

    if param_set[2] == 'halofit':
        nonlinear_model = camb.model.NonLinear_both
    else:
        nonlinear_model = camb.model.NonLinear_none

    if isinstance(cosmo_fid[param_vary], float):
        cosmo_pert = cosmo_fid.copy()
        cosmo_pert[param_vary] *= (1. + eps)
        print(cosmo_pert['Omegar'])

        C_pert = cp.CosmoPie(cosmo_pert, p_space='jdem')
        P_pert = mps.MatterPower(C_pert, power_params)
        k_pert = P_pert.k
        C_pert.k = k_pert

        P_res1 = P_pert.get_matter_power(np.array([0.]),
                                         pmodel=param_set[2])[:, 0]
        k_res2, P_res2 = camb_pow(C_pert.cosmology,
                                  zbar=np.array([0.]),
                                  camb_params=camb_params,
                                  nonlinear_model=nonlinear_model)

        atol_power = np.max(P_res1) * atol_rel
        atol_k = np.max(k_pert) * atol_rel

        assert np.allclose(k_res2, k_pert, atol=atol_k, rtol=rtol)
        assert np.allclose(P_res1, P_res2, atol=atol_power, rtol=rtol)
Esempio n. 6
0
def cosmo_input():
    """get cosmology for test"""
    cosmo_start = defaults.cosmology.copy()
    cosmo_start['w'] = -1
    cosmo_start['de_model'] = 'constant_w'
    C_start = cp.CosmoPie(cosmology=cosmo_start, p_space='jdem')
    #base set
    #params = {'w_step':0.005,'w_min':-3.50,'w_max':0.1,'a_step':0.001,'a_min':0.000916674,'a_max':1.00}
    #mod se
    params = {
        'w_step': 0.005,
        'w_min': -3.5,
        'w_max': 0.1,
        'a_step': 0.001,
        'a_min': 0.000916674,
        'a_max': 1.00
    }

    wm = WMatcher(C_start, params)
    a_grid = np.arange(1.00, 0.001, -0.01)
    zs = 1. / a_grid - 1.

    return [cosmo_start, C_start, params, wm, a_grid, zs]
Esempio n. 7
0
def test_casarini_match(cosmo_input):
    """check code matches results extracted from a figure"""
    cosmo_start = cosmo_input[0]
    wm = cosmo_input[3]
    #zs = cosmo_input[5]

    #should match arXiv:1601.07230v3 figure 2
    cosmo_match_a = cosmo_start.copy()
    cosmo_match_a['de_model'] = 'w0wa'
    cosmo_match_a['w0'] = -1.2
    cosmo_match_a['wa'] = 0.5
    cosmo_match_a['w'] = -1.2

    cosmo_match_b = cosmo_match_a.copy()
    cosmo_match_b['w0'] = -0.6
    cosmo_match_b['wa'] = -1.5
    cosmo_match_b['w'] = -0.6

    C_match_a = cp.CosmoPie(cosmology=cosmo_match_a, p_space='jdem')
    C_match_b = cp.CosmoPie(cosmology=cosmo_match_b, p_space='jdem')

    weff_2 = np.loadtxt('test_inputs/wmatch/weff_2.dat')
    ws_a_pred = weff_2[:, 1]
    zs_a_pred = weff_2[:, 0]

    weff_1 = np.loadtxt('test_inputs/wmatch/weff_1.dat')
    ws_b_pred = weff_1[:, 1]
    zs_b_pred = weff_1[:, 0]

    z_max_a = np.max(zs_a_pred)
    z_max_b = np.max(zs_b_pred)
    z_min_a = np.min(zs_a_pred)
    z_min_b = np.min(zs_b_pred)
    zs_a = np.arange(z_min_a, z_max_a, 0.05)
    zs_b = np.arange(z_min_b, z_max_b, 0.05)

    ws_a = wm.match_w(C_match_a, zs_a)
    ws_b = wm.match_w(C_match_b, zs_b)

    ws_a_interp = InterpolatedUnivariateSpline(zs_a_pred,
                                               ws_a_pred,
                                               k=1,
                                               ext=2)(zs_a)
    ws_b_interp = InterpolatedUnivariateSpline(zs_b_pred,
                                               ws_b_pred,
                                               k=1,
                                               ext=2)(zs_b)

    ws_a = wm.match_w(C_match_a, zs_a)
    ws_b = wm.match_w(C_match_b, zs_b)

    mse_w_a = np.linalg.norm(
        (ws_a - ws_a_interp) / ws_a_interp) / ws_a_interp.size
    mse_w_b = np.linalg.norm(
        (ws_b - ws_b_interp) / ws_b_interp) / ws_b_interp.size
    print(mse_w_a, mse_w_b)
    assert mse_w_a < 7.e-4
    assert mse_w_b < 7.e-3

    sigma_a_in = np.loadtxt('test_inputs/wmatch/sigma_2.dat')
    sigma_b_in = np.loadtxt('test_inputs/wmatch/sigma_1.dat')

    zs_a_pred_2 = sigma_a_in[:, 0]
    zs_b_pred_2 = sigma_a_in[:, 0]
    z_max_a_2 = np.max(zs_a_pred_2)
    z_max_b_2 = np.max(zs_b_pred_2)
    z_min_a_2 = np.min(zs_a_pred_2)
    z_min_b_2 = np.min(zs_b_pred_2)
    zs_a_2 = np.arange(z_min_a_2, z_max_a_2, 0.05)
    zs_b_2 = np.arange(z_min_b_2, z_max_b_2, 0.05)

    pow_mults_a = wm.match_growth(C_match_a, zs_a_2, ws_a)
    pow_mults_b = wm.match_growth(C_match_b, zs_b_2, ws_b)

    sigma_a_interp = InterpolatedUnivariateSpline(sigma_a_in[:, 0],
                                                  sigma_a_in[:, 1],
                                                  k=3,
                                                  ext=2)(zs_a_2)
    sigma_b_interp = InterpolatedUnivariateSpline(sigma_b_in[:, 0],
                                                  sigma_b_in[:, 1],
                                                  k=3,
                                                  ext=2)(zs_b_2)

    sigma_a = np.sqrt(pow_mults_a) * 0.83
    sigma_b = np.sqrt(pow_mults_b) * 0.83

    mse_sigma_a = np.linalg.norm(
        (sigma_a - sigma_a_interp) / sigma_a_interp) / sigma_a_interp.size
    mse_sigma_b = np.linalg.norm(
        (sigma_b - sigma_b_interp) / sigma_b_interp) / sigma_b_interp.size
    print(mse_sigma_a, mse_sigma_b)
    assert mse_sigma_a < 5.e-4
    assert mse_sigma_b < 5.e-4
Esempio n. 8
0
    print(mse_sigma_a, mse_sigma_b)
    assert mse_sigma_a < 5.e-4
    assert mse_sigma_b < 5.e-4


if __name__ == '__main__':
    do_test_battery = False
    do_other_tests = True
    if do_test_battery:
        pytest.cmdline.main(['w_matcher_tests.py'])

    if do_other_tests:
        cosmo_start = defaults.cosmology.copy()
        cosmo_start['w'] = -1
        cosmo_start['de_model'] = 'constant_w'
        C_start = cp.CosmoPie(cosmology=cosmo_start, p_space='jdem')
        params = {
            'w_step': 0.01,
            'w_min': -3.50,
            'w_max': 0.1,
            'a_step': 0.001,
            'a_min': 0.000916674,
            'a_max': 1.00
        }

        do_convergence_test_w0wa = False
        do_convergence_test_jdem = False
        do_match_casarini = True
        do_plots = True

        fails = 0
Esempio n. 9
0
def test_hmf():
    """run various hmf tests as a block"""
    cosmo_fid = defaults.cosmology.copy()

    cosmo_fid['h'] = 0.65
    cosmo_fid['Omegamh2'] = 0.148
    cosmo_fid['Omegabh2'] = 0.02
    cosmo_fid['OmegaLh2'] = 0.65 * 0.65**2
    cosmo_fid['sigma8'] = 0.92
    cosmo_fid['ns'] = 1.
    cosmo_fid = cp.add_derived_pars(cosmo_fid, p_space='basic')
    power_params = defaults.power_params.copy()
    power_params.camb['force_sigma8'] = True
    power_params.camb['npoints'] = 1000
    power_params.camb['maxkh'] = 20000.
    power_params.camb['kmax'] = 100.  #0.899999976158
    power_params.camb['accuracy'] = 2.
    C = cp.CosmoPie(cosmo_fid, 'basic')
    P = mps.MatterPower(C, power_params)
    C.set_power(P)
    params = defaults.hmf_params.copy()
    params['z_min'] = 0.0
    params['z_max'] = 5.0
    params['log10_min_mass'] = 6
    params['log10_max_mass'] = 18.63
    params['n_grid'] = 1264
    params['n_z'] = 5. / 0.5
    hmf = ST_hmf(C, params=params)
    Ms = hmf.mass_grid

    do_sanity_checks = True
    if do_sanity_checks:
        print("sanity")
        #some sanity checks
        zs = np.arange(0.001, 5., 0.1)
        Gs = C.G_norm(zs)

        #arbitrary input M(z) cutoff
        m_z_in = np.exp(np.linspace(np.log(np.min(Ms)), np.log(1.e15),
                                    zs.size))
        m_z_in[0] = Ms[0]

        #check normalized to unity (all dark matter is in some halo)

        #        f_norm_residual = trapz(hmf.f_sigma(Ms,Gs).T,np.log(hmf.sigma[:-1:]**-1),axis=1)
        #assert np.allclose(np.zeros(Gs.size)+1.,norm_residual)
        _, _, dndM = hmf.mass_func(Ms, Gs)
        n_avgs_alt = np.zeros(zs.size)
        bias_n_avgs_alt = np.zeros(zs.size)
        dndM_G_alt = np.zeros((Ms.size, zs.size))
        for i in range(0, zs.size):
            n_avgs_alt[i] = hmf.n_avg(m_z_in[i], zs[i])
            bias_n_avgs_alt[i] = hmf.bias_n_avg(m_z_in[i], zs[i])
            dndM_G_alt[:, i] = hmf.dndM_G(Ms, Gs[i])
        dndM_G = hmf.dndM_G(Ms, Gs)
        #consistency checks for vector method
        assert np.allclose(dndM_G, dndM_G_alt)
        n_avgs = hmf.n_avg(m_z_in, zs)
        bias_n_avgs = hmf.bias_n_avg(m_z_in, zs)
        assert np.allclose(n_avgs, n_avgs_alt)
        assert np.all(n_avgs >= 0.)
        assert np.allclose(bias_n_avgs, bias_n_avgs_alt)
        #check integrating dn/dM over all M actually gives n
        assert np.allclose(trapz(dndM.T, Ms, axis=1),
                           hmf.n_avg(np.zeros(zs.size) + Ms[0], zs))
        test_xs = np.outer(hmf.nu_of_M(Ms), 1. / Gs**2)
        test_integrand = hmf.f_sigma(Ms, Gs) * hmf.bias_G(
            Ms, Gs, hmf.bias_norm(Gs))
        #not sure why, but this is true (if ignore h)
        #test_term = np.trapz(test_integrand,test_xs,axis=0)*hmf.f_norm(Gs)
        #assert np.allclose(1.,test_term,rtol=1e-3)
        b_norm_residual = np.trapz(test_integrand, test_xs, axis=0)
        assert np.allclose(np.zeros(zs.size) + 1., b_norm_residual)
        #b_norm_residual_alt = np.trapz(hmf.f_sigma(Ms,Gs)*hmf.bias_G(Ms,Gs),test_xs,axis=0)
        b_norm_residual_alt2 = np.trapz(hmf.f_sigma(Ms, Gs) *
                                        hmf.bias_G(Ms, Gs, 1.),
                                        test_xs,
                                        axis=0)
        #check including norm_in behaves appropriately does not matter
        #assert np.allclose(b_norm_residual_alt,b_norm_residual_alt2)
        assert np.allclose(b_norm_residual,
                           b_norm_residual_alt2 / hmf.bias_norm(Gs))
        #hcekc all the matter in a halo if include normalization factor
        assert np.allclose(
            np.trapz(hmf.f_sigma(Ms, 1., 1.), np.log(1. / hmf.sigma[:-1:])),
            hmf.f_norm(1.))

        #sanity check M_star
        assert np.round(np.log10(hmf.M_star())) == 13.
        assert np.isclose(C.sigma_r(0., 8. / C.h),
                          cosmo_fid['sigma8'],
                          rtol=1.e-3)
        assert np.isclose(C.sigma_r(1., 8. / C.h),
                          C.G_norm(1.) * cosmo_fid['sigma8'],
                          rtol=1.e-3)

        #M_restrict = 10**np.linspace(np.log10(4.*10**13),16,100)
        #n_restrict = hmf.n_avg(M_restrict,0.)
        nu = hmf.nu_of_M(Ms)
        bias_nu = hmf.bias_nu(nu)
        bias_G = hmf.bias_G(Ms, 1.)
        bias_z = hmf.bias(Ms, 0.)
        assert np.allclose(bias_nu, bias_G)
        assert np.allclose(bias_nu, bias_z)
        assert np.allclose(bias_G, bias_z)
        assert np.all(bias_nu >= 0)
        #        dndm = hmf.dndM_G(Ms,1.)
        #        bias_avg = np.trapz(bias_nu*dndm,Ms)

        n_avg2 = hmf.n_avg(Ms, 0.)
        assert np.all(n_avg2 >= 0.)
        #        bias_n_avg1 = bias_nu*n_avg2
        #bias_n_avg2 = hmf.bias_n_avg(Ms)

        #        integ_pred = np.trapz(hmf.f_sigma(Ms,1.,1.),np.log(1./hmf.sigma[:-1:]))
        #        integ_res = np.trapz(Ms*hmf.dndM_G(Ms,1.),Ms)/C.rho_bar(0.)
        #assert np.isclose(integ_res,integ_pred,rtol=1.e-2)
        #xs n#np.linspace(np.log(np.sqrt(nu[0])),np.log(nu[-1]),10000)
        #xs = np.exp(np.linspace(np.log(np.sqrt(nu[0]),np.log(1.e36),10000))
        #F = -cumtrapz(1./np.sqrt(2.*np.pi)*np.exp(-xs[::-1]**2/2.),xs[::-1])[::-1]
        #cons_res = np.trapz(hmf.dndM_G(Ms,1.)*Ms*hmf.bias(Ms,1.),Ms)/C.rho_bar(0.)
        assert np.isclose(np.trapz(bias_nu * hmf.f_nu(nu), np.sqrt(nu)),
                          1.,
                          rtol=1.e-1)
        #assert np.isclose(np.trapz(hmf.f_nu(nu)/np.sqrt(nu),np.sqrt(nu)),1.,rtol=2.e-1)

        #bias_avg = np.trapz(hmf.dndM_G(Ms,1.)*hmf.bias_G(Ms,1.),Ms)/np.trapz(hmf.dndM_G(Ms,1.),Ms)
        #check for various edge cases of n_avg and bias_n_avg
        z2s = np.array([0., 1.])
        m2s = np.array([1.e8, 1.e9])
        n1 = hmf.n_avg(m2s[0], z2s[0])
        n2 = hmf.n_avg(m2s[0], z2s)
        n3 = hmf.n_avg(m2s, z2s[0])
        n4 = hmf.n_avg(m2s, z2s)
        n5 = hmf.n_avg(m2s[1], z2s[1])
        n6 = hmf.n_avg(m2s[1], z2s[0])
        n7 = hmf.n_avg(m2s[0], z2s[1])
        assert np.isclose(n1, n2[0])
        assert np.isclose(n1, n3[0])
        assert np.isclose(n1, n4[0])
        assert np.isclose(n5, n4[1])
        assert np.isclose(n2[1], n7)
        assert np.isclose(n3[1], n6)
        bn1 = hmf.bias_n_avg(m2s[0], z2s[0])
        bn2 = hmf.bias_n_avg(m2s[0], z2s)
        bn3 = hmf.bias_n_avg(m2s, z2s[0])
        bn4 = hmf.bias_n_avg(m2s, z2s)
        bn5 = hmf.bias_n_avg(m2s[1], z2s[1])
        bn6 = hmf.bias_n_avg(m2s[1], z2s[0])
        bn7 = hmf.bias_n_avg(m2s[0], z2s[1])
        assert np.isclose(bn1, bn2[0])
        assert np.isclose(bn1, bn3[0])
        assert np.isclose(bn1, bn4[0])
        assert np.isclose(bn5, bn4[1])
        assert np.isclose(bn2[1], bn7)
        assert np.isclose(bn3[1], bn6)

        n_avgs_0 = hmf.n_avg(hmf.mass_grid, 0.)
        n_avgs_1 = np.zeros(hmf.mass_grid.size)
        for itr in range(0, hmf.mass_grid.size):
            n_avgs_1[itr] = hmf.n_avg(hmf.mass_grid[itr], 0.)
        assert np.allclose(n_avgs_0, n_avgs_1)

        bn_avgs_0 = hmf.bias_n_avg(hmf.mass_grid, 0.)
        bn_avgs_1 = np.zeros(hmf.mass_grid.size)
        for itr in range(0, hmf.mass_grid.size):
            bn_avgs_1[itr] = hmf.bias_n_avg(hmf.mass_grid[itr], 0.)
        assert np.allclose(bn_avgs_0, bn_avgs_1)

        print("PASS: sanity passed")

    do_plot_test2 = True
    if do_plot_test2:
        #Ms = 10**(np.linspace(11,14,500))
        # dndM_G=hmf.dndM_G(Ms,Gs)
        do_jenkins_comp = True
        #should look like dotted line in figure 3 of    arXiv:astro-ph/0005260
        if do_jenkins_comp:
            print("jenkins_comp")
            zs = np.array([0.])
            Gs = C.G_norm(zs)
            dndM_G = hmf.f_sigma(Ms, Gs)
            input_dndm = np.loadtxt('test_inputs/hmf/dig_jenkins_fig3.csv',
                                    delimiter=',')
            res_j = np.exp(input_dndm[:, 1])
            res_i = InterpolatedUnivariateSpline(1. / hmf.sigma[:-1:],
                                                 dndM_G,
                                                 k=3,
                                                 ext=2)(np.exp(input_dndm[:,
                                                                          0]))
            assert np.all(np.abs((res_j / res_i - 1.)[0:19]) < 0.03)
            print("PASS: jenkins_comp")

        do_sheth_bias_comp1 = True
        #agrees pretty well, maybe as well as it should
        #compare to rightmost arXiv:astro-ph/9901122 figure 3
        if do_sheth_bias_comp1:
            print("sheth_bias_comp1")
            cosmo_fid2 = cosmo_fid.copy()
            cosmo_fid2['Omegamh2'] = 0.3 * 0.7**2
            cosmo_fid2['Omegabh2'] = 0.05 * 0.7**2
            cosmo_fid2['OmegaLh2'] = 0.7 * 0.7**2
            cosmo_fid2['sigma8'] = 0.9
            cosmo_fid2['h'] = 0.7
            cosmo_fid2['ns'] = 1.0
            cosmo_fid2 = cp.add_derived_pars(cosmo_fid2, p_space='basic')
            C2 = cp.CosmoPie(cosmo_fid2, 'basic')
            P2 = mps.MatterPower(C2, power_params)
            C2.set_power(P2)
            params2 = params.copy()
            hmf2 = ST_hmf(C2, params=params2)
            zs = np.array([0., 1., 2., 4.])
            Gs = C2.G_norm(zs)
            input_bias = np.loadtxt('test_inputs/hmf/dig_sheth_fig3.csv',
                                    delimiter=',')
            bias = hmf2.bias_G(10**input_bias[:, 0], Gs)
            error = np.abs(1. - 10**input_bias[:, 1:5] / bias**2)
            error_max = np.array([0.06, 0.4, 0.2, 0.4])
            assert np.all(np.max(error, axis=0) < error_max)
            print("PASS: sheth_bias_comp1")

        do_sheth_bias_comp2 = True
        #agrees well
        #compare to bottom arXiv:astro-ph/9901122 figure 4
        if do_sheth_bias_comp2:
            print("sheth_bias_comp2")
            cosmo_fid2 = cosmo_fid.copy()
            cosmo_fid2['Omegamh2'] = 0.3 * 0.7**2
            cosmo_fid2['Omegabh2'] = 0.05 * 0.7**2
            cosmo_fid2['OmegaLh2'] = 0.7 * 0.7**2
            cosmo_fid2['sigma8'] = 0.9
            cosmo_fid2['h'] = 0.7
            cosmo_fid2['ns'] = 1.0
            cosmo_fid2 = cp.add_derived_pars(cosmo_fid2, p_space='basic')
            C2 = cp.CosmoPie(cosmo_fid2, 'basic')
            P2 = mps.MatterPower(C2, power_params)
            C2.set_power(P2)
            C2.k = P2.k
            params2 = params.copy()
            hmf2 = ST_hmf(C2, params=params2)
            input_bias = np.loadtxt('test_inputs/hmf/dig_sheth2.csv',
                                    delimiter=',')
            bias = hmf2.bias_nu(10**input_bias[:, 0])
            observable = 1. + (bias - 1.) * hmf2.delta_c
            error = np.abs(1. - 10**input_bias[:, 1] / observable)
            error_max = 0.07
            assert np.all(np.max(error) < error_max)
            print("PASS: sheth_bias_comp2")

        #should agree, does
        #match fig 2 arXiv:astro-ph/0203169
        do_hu_bias_comp2 = True
        if do_hu_bias_comp2:
            print("hu_bias_comp2")
            zs = np.array([0.])
            Gs = C.G_norm(zs)
            bias = hmf.bias_G(Ms, Gs, 1.)[:, 0]  #why 1
            #maybe should have k pivot 0.01
            input_bias = np.loadtxt('test_inputs/hmf/dig_hu_bias2.csv',
                                    delimiter=',')
            #            masses = 10**np.linspace(np.log10(10**11),np.log10(10**16),100)
            bias_hu_i = 10**input_bias[:,
                                       1]  #InterpolatedUnivariateSpline(10**input_bias[:,0],10**input_bias[:,1])(masses)
            bias_i = hmf.bias_G(10**input_bias[:, 0], Gs, 1.)[:, 0]
            assert np.max(np.abs(bias_hu_i / bias_i - 1.)) < 0.06
            print("PASS: hu_bias_comp2 passed")

        #should agree, does
        #match fig 1 arXiv:astro-ph/0203169
        do_hu_sigma_comp = True
        if do_hu_sigma_comp:
            print("hu_sigma_comp")
            assert np.isclose(hmf.M_star(), 1.2 * 10**13, rtol=1.e-1)
            input_sigma = np.loadtxt('test_inputs/hmf/dig_hu_sigma.csv',
                                     delimiter=',')
            res_sigma = InterpolatedUnivariateSpline(hmf.R,
                                                     hmf.sigma,
                                                     k=3,
                                                     ext=2)(10**input_sigma[:,
                                                                            0])
            assert np.all(
                np.abs((res_sigma / 10**input_sigma[:, 1])[4::] - 1.) < 0.02)
            print("PASS: hu_sigma_comp")
Esempio n. 10
0
def test_super_survey(de_model):
    """run some eigenvalue tests of SuperSurvey pipeline"""
    t1 = time()
    z_max = 1.35
    l_max = 50

    camb_params = defaults.camb_params.copy()
    camb_params['force_sigma8'] = False
    camb_params['kmax'] = 5.
    camb_params['npoints'] = 1000
    cosmo_fid = defaults.cosmology_jdem.copy()
    cosmo_fid['w'] = -1.
    cosmo_fid['w0'] = cosmo_fid['w']
    cosmo_fid['wa'] = 0.
    cosmo_fid['de_model'] = de_model
    if cosmo_fid['de_model'] == 'jdem':
        for i in range(0, 36):
            cosmo_fid['ws36_' + str(i).zfill(2)] = cosmo_fid['w']

    C = cp.CosmoPie(cosmology=cosmo_fid, p_space='jdem')
    power_params = defaults.power_params.copy()
    power_params.camb = camb_params
    P = mps.MatterPower(C, power_params)
    C.set_power(P)
    r_max = C.D_comov(z_max)
    print('this is r max and l_max', r_max, l_max)

    phi1s = np.array([
        -19., -19., -11., -11., 7., 25., 25., 43., 43., 50., 50., 50., 24., 5.,
        5., 7., 7., -19.
    ]) * np.pi / 180.
    theta1s = np.array([
        -50., -35., -35., -19., -19., -19., -15.8, -15.8, -40., -40., -55.,
        -78., -78., -78., -55., -55., -50., -50.
    ]) * np.pi / 180. + np.pi / 2.
    phi_in1 = 7. / 180. * np.pi
    theta_in1 = -35. * np.pi / 180. + np.pi / 2.

    theta0 = np.pi / 4.
    theta1 = 3. * np.pi / 4.
    phi0 = 0.
    phi1 = 3.074096023740458
    phi2 = np.pi / 3.
    phi3 = phi2 + (phi1 - phi0)
    theta2s = np.array([theta0, theta1, theta1, theta0, theta0])
    phi2s = np.array([phi0, phi0, phi1, phi1, phi0]) - phi1 / 2.
    theta_in2 = np.pi / 2.
    phi_in2 = 0.
    res_choose = 7

    Theta1 = [theta0, theta1]
    Phi1 = [phi0, phi1]
    Theta2 = [theta0, theta1]
    Phi2 = [phi2, phi3]

    zs = np.array([0.2, 0.43, .63, 0.9, 1.3])
    z_fine = np.linspace(0.001, np.max(zs), 2000)  #use linspace
    use_poly = True
    use_poly2 = True
    if use_poly:
        if use_poly2:
            geo1 = PolygonGeo(zs, theta1s, phi1s, theta_in1, phi_in1, C,
                              z_fine, l_max, defaults.polygon_params.copy())
            geo2 = PolygonGeo(zs, theta2s, phi2s, theta_in2, phi_in2, C,
                              z_fine, l_max, defaults.polygon_params.copy())
        else:
            geo1 = PolygonPixelGeo(zs, theta1s, phi1s, theta_in1, phi_in1, C,
                                   z_fine, l_max, res_choose)
            geo2 = PolygonPixelGeo(zs, theta2s, phi2s, theta_in2, phi_in2, C,
                                   z_fine, l_max, res_choose)
    else:
        geo1 = RectGeo(zs, Theta1, Phi1, C, z_fine)
        geo2 = RectGeo(zs, Theta2, Phi2, C, z_fine)

    len_params = defaults.lensing_params.copy()
    len_params['pmodel'] = 'halofit'

    lenless_defaults = defaults.sw_survey_params.copy()
    lenless_defaults['needs_lensing'] = False
    if cosmo_fid['de_model'] == 'w0wa':
        cosmo_par_list = np.array(
            ['ns', 'Omegamh2', 'Omegabh2', 'OmegaLh2', 'LogAs', 'w0', 'wa'])
        cosmo_par_eps = np.array(
            [0.002, 0.0005, 0.0001, 0.0005, 0.1, 0.01, 0.07])
    elif cosmo_fid['de_model'] == 'constant_w':
        cosmo_par_list = np.array(
            ['ns', 'Omegamh2', 'Omegabh2', 'OmegaLh2', 'LogAs', 'w'])
        cosmo_par_eps = np.array([0.002, 0.0005, 0.0001, 0.0005, 0.1, 0.01])
    elif cosmo_fid['de_model'] == 'jdem':
        cosmo_par_list = ['ns', 'Omegamh2', 'Omegabh2', 'OmegaLh2', 'LogAs']
        cosmo_par_list.extend(cp.JDEM_LIST)
        cosmo_par_list = np.array(cosmo_par_list, dtype=object)
        cosmo_par_eps = np.full(41, 0.5)
        cosmo_par_eps[0:5] = np.array([0.002, 0.0005, 0.0001, 0.0005, 0.1])

    else:
        raise ValueError('not prepared to handle ' +
                         str(cosmo_fid['de_model']))

    #note that currently (poorly implemented derivative) in jdem,
    #OmegaLh2 and LogAs are both almost completely unconstrained but nondegenerate,
    #while in basic, h and sigma8 are not constrained but are almost completely degenerate
    nz_params = defaults.nz_params_wfirst_lens.copy()

    from nz_wfirst import NZWFirst
    nz_matcher = NZWFirst(nz_params)
    len_params['smodel'] = 'nzmatcher'
    sw_params = defaults.sw_survey_params.copy()
    obs_list = defaults.sw_observable_list.copy()
    survey_1 = SWSurvey(geo1, 's1', C, sw_params, cosmo_par_list,
                        cosmo_par_eps, obs_list, len_params, nz_matcher)

    surveys_sw = np.array([survey_1])

    geos = np.array([geo1, geo2])
    k_cut = 0.005

    basis = SphBasisK(r_max,
                      C,
                      k_cut,
                      defaults.basis_params.copy(),
                      l_ceil=100)
    lw_param_list = defaults.lw_param_list.copy()
    lw_observable_list = defaults.lw_observable_list.copy()
    survey_3 = LWSurvey(geos,
                        'lw_survey1',
                        basis,
                        C,
                        defaults.lw_survey_params.copy(),
                        observable_list=lw_observable_list,
                        param_list=lw_param_list)
    surveys_lw = np.array([survey_3])

    print('main: this is r_max: ' + str(r_max))
    SS = SuperSurvey(surveys_sw,
                     surveys_lw,
                     basis,
                     C,
                     defaults.prior_fisher_params.copy(),
                     get_a=False,
                     do_unmitigated=True,
                     do_mitigated=True,
                     include_sw=True)

    t2 = time()
    print("main: total run time " + str(t2 - t1) + " s")

    mit_eigs_sw = SS.eig_set[0, 1]
    no_mit_eigs_sw = SS.eig_set[0, 0]
    mit_eigs_par = SS.eig_set[1, 1]
    no_mit_eigs_par = SS.eig_set[1, 0]
    #TODO check eigenvalue interlace for this projection
    SS.print_standard_analysis()
    #    print("main: unmitigated sw lambda1,2: "+str(no_mit_eigs_sw[0][-1])+","+str(no_mit_eigs_sw[0][-2]))
    #    print("main: mitigated sw lambda1,2: "+str(mit_eigs_sw[0][-1])+","+str(mit_eigs_sw[0][-2]))
    #    print("main: n sw mit lambda>1.00000001: "+str(np.sum(np.abs(mit_eigs_sw[0])>1.00000001)))
    #    print("main: n sw no mit lambda>1.00000001: "+str(np.sum(np.abs(no_mit_eigs_sw[0])>1.00000001)))
    #    print("main: unmitigated par lambda1,2: "+str(no_mit_eigs_par[0][-1])+","+str(no_mit_eigs_par[0][-2]))
    #    print("main: mitigated par lambda1,2: "+str(mit_eigs_par[0][-1])+","+str(mit_eigs_par[0][-2]))
    #    print("main: n par mit lambda>1.00000001: "+str(np.sum(np.abs(mit_eigs_par[0])>1.00000001)))
    #    print("main: n par no mit lambda>1.00000001: "+str(np.sum(np.abs(no_mit_eigs_par[0])>1.00000001)))
    v_no_mit_par = np.dot(SS.f_set_nopriors[0][2].get_cov_cholesky(),
                          no_mit_eigs_par[1])
    v_mit_par = np.dot(SS.f_set_nopriors[0][2].get_cov_cholesky(),
                       mit_eigs_par[1])

    v_no_mit_sw = np.dot(SS.f_set_nopriors[0][1].get_cov_cholesky(),
                         no_mit_eigs_sw[1])
    v_mit_sw = np.dot(SS.f_set_nopriors[0][1].get_cov_cholesky(),
                      mit_eigs_sw[1])

    test_v = True
    v_test_fails = 0
    if test_v:
        m_mat_no_mit_par = np.identity(mit_eigs_par[0].size) + np.dot(
            SS.f_set_nopriors[1][2].get_covar(),
            SS.f_set_nopriors[0][2].get_fisher())
        m_mat_mit_par = np.identity(mit_eigs_par[0].size) + np.dot(
            SS.f_set_nopriors[2][2].get_covar(),
            SS.f_set_nopriors[0][2].get_fisher())

        if not np.allclose(
                np.dot(m_mat_no_mit_par, v_no_mit_par) /
            (1. + no_mit_eigs_par[0]), v_no_mit_par):
            v_test_fails += 1
            warn('some no mit eig vectors may be bad')
        if not np.allclose(
                np.dot(m_mat_mit_par, v_mit_par) /
            (1. + mit_eigs_par[0]), v_mit_par):
            v_test_fails += 1
            warn('some mit eig vectors may be bad')
    if v_test_fails == 0:
        print("PASS: eigenvector decomposition checks passed")
    else:
        raise RuntimeError('FAIL: ' + str(v_test_fails) +
                           ' eigenvector decomposition checks failed')

    get_hold_mats = False
    if get_hold_mats:
        no_prior_hold = SS.f_set[0][2].get_fisher()
        if C.de_model == 'jdem':
            no_prior_project = prior_fisher.project_w0wa(
                no_prior_hold, defaults.prior_fisher_params.copy(),
                prior_fisher.JDEM_LABELS)

    print('main: r diffs', np.diff(geo1.rs))
    print('main: theta width',
          (geo1.rs[1] + geo1.rs[0]) / 2. * (Theta1[1] - Theta1[0]))
    print('main: phi width',
          (geo1.rs[1] + geo1.rs[0]) / 2. * (Phi1[1] - Phi1[0]) * np.sin(
              (Theta1[1] + Theta1[0]) / 2))

    test_perturbation = True
    pert_test_fails = 0
    if test_perturbation:
        #TOLERANCE below which an eigenvalue less than TOLERANCE*max eigenvalue is considered 0
        REL_TOLERANCE = 10**-8
        f0 = SS.multi_f.get_fisher(mf.f_spec_no_mit,
                                   mf.f_return_lw)[0].get_fisher()
        f1 = SS.multi_f.get_fisher(mf.f_spec_mit,
                                   mf.f_return_lw)[0].get_fisher()
        if not np.all(f0.T == f0):
            pert_test_fails += 1
            warn("unperturbed fisher matrix not symmetric, unacceptable")
        if not np.all(f1.T == f1):
            pert_test_fails += 1
            warn("perturbed fisher matrix not symmetric, unacceptable")
        #get eigenvalues and set numerically zero values to 0
        eigf0 = np.linalg.eigh(f0)[0]
        eigf0[np.abs(eigf0) < REL_TOLERANCE * np.max(np.abs(eigf0))] = 0.
        eigf1 = np.linalg.eigh(f1)[0]
        eigf1[np.abs(eigf1) < REL_TOLERANCE * np.max(np.abs(eigf1))] = 0.
        #check positive semidefinite
        if np.any(eigf0 < 0.):
            pert_test_fails += 1
            warn(
                "unperturbed fisher matrix not positive definite within tolerance, unacceptable"
            )
        if np.any(eigf1 < 0.):
            pert_test_fails += 1
            warn(
                "perturbed fisher matrix not positive definite within tolerance, unacceptable"
            )

        #check nondecresasing
        diff_eig = eigf1 - eigf0
        diff_eig[np.abs(diff_eig) < REL_TOLERANCE *
                 np.max(np.abs(diff_eig))] = 0
        if np.any(diff_eig < 0):
            pert_test_fails += 1
            warn("some eigenvalues decreased within tolerance, unacceptable")

        #check interlace theorem satisfied (eigenvalues cannot be reordered by more than rank of perturbation)
        n_offset = SS.surveys_lw[0].get_total_rank()
        rolled_eig = (eigf1[::-1][n_offset:eigf0.size] -
                      eigf0[::-1][0:eigf0.size - n_offset])
        rolled_eig[np.abs(rolled_eig) < REL_TOLERANCE *
                   np.max(np.abs(rolled_eig))] = 0.
        if np.any(rolled_eig > 0):
            pert_test_fails += 1
            warn("some eigenvalues fail interlace theorem, unacceptable")

        c0 = SS.multi_f.get_fisher(mf.f_spec_no_mit,
                                   mf.f_return_lw)[0].get_covar()
        c1 = SS.multi_f.get_fisher(mf.f_spec_mit,
                                   mf.f_return_lw)[0].get_covar()
        if not np.all(c0 == c0.T):
            pert_test_fails += 1
            warn("unperturbed covariance not symmetric, unacceptable")
        if not np.all(c1 == c1.T):
            warn("perturbed covariance not symmetric, unacceptable")
        eigc0 = np.linalg.eigh(c0)[0]
        eigc1 = np.linalg.eigh(c1)[0]
        if np.any(eigc0 < 0):
            pert_test_fails += 1
            warn(
                "unperturbed covariance not positive semidefinite, unacceptable"
            )
        if np.any(eigc1 < 0):
            pert_test_fails += 1
            warn(
                "perturbed covariance not positive semidefinite, unacceptable")
        fdiff_eigc = (eigc1 - eigc0) / eigc0
        fdiff_eigc[np.abs(fdiff_eigc) < REL_TOLERANCE] = 0.
        if np.any(fdiff_eigc > 0):
            pert_test_fails += 1
            warn("some covariance eigenvalues increase, unacceptable")

        if pert_test_fails == 0:
            print("PASS: All fisher matrix sanity checks passed")
        else:
            raise RuntimeError("FAIL: " + str(pert_test_fails) +
                               " fisher matrix sanity checks failed")
    test_eigs = True
    eig_test_fails = 0
    if test_eigs:
        REL_TOLERANCE = 10**-8
        c_ssc0 = SS.multi_f.get_fisher(
            mf.f_spec_SSC_no_mit,
            mf.f_return_sw)[1].get_covar()  #SS.covs_sw[0].get_ssc_covar()
        if not np.allclose(c_ssc0, c_ssc0.T):
            eig_test_fails += 1
            warn("unperturbed result covariance not symmetric, unacceptable")
        c_ssc1 = SS.multi_f.get_fisher(
            mf.f_spec_SSC_mit,
            mf.f_return_sw)[1].get_covar()  #SS.covs_sw[0].get_ssc_covar()
        if not np.allclose(c_ssc1, c_ssc1.T):
            eig_test_fails += 1
            warn("perturbed result covariance not symmetric, unacceptable")
        eigsys_ssc0 = np.linalg.eigh(c_ssc0)
        eigsys_ssc1 = np.linalg.eigh(c_ssc1)
        eig_ssc0 = eigsys_ssc0[0].copy()
        eig_ssc1 = eigsys_ssc1[0].copy()
        eig_ssc0[np.abs(eig_ssc0) < np.max(np.abs(eig_ssc0)) *
                 REL_TOLERANCE] = 0
        eig_ssc1[np.abs(eig_ssc0) < np.max(np.abs(eig_ssc0)) *
                 REL_TOLERANCE] = 0
        if np.any(eig_ssc0 < 0):
            eig_test_fails += 1
            warn(
                "unperturbed result cov not positive semidefinite, unacceptable"
            )
        if np.any(eig_ssc1 < 0):
            eig_test_fails += 1
            warn(
                "perturbed result cov not positive semidefinite, unacceptable")
        cg = SS.f_set_nopriors[0][1].get_covar()
        eigsys_cg = np.linalg.eigh(cg)
        eig_mitprod = np.real(
            np.linalg.eig(np.dot(np.linalg.inv(c_ssc0 + cg), c_ssc1 + cg))[0])
        eig_mitprod[np.abs(eig_mitprod - 1.) < REL_TOLERANCE] = 1.
        if np.any(eig_mitprod > 1):
            eig_test_fails += 1
            warn("mitigation making covariance worse, unacceptable")
        n_offset = SS.surveys_lw[0].get_total_rank()
        if np.sum(eig_mitprod < 1.) > n_offset:
            eig_test_fails += 1
            warn("mitigation changing too many eigenvalues, unacceptable")
        eig_diff = eig_ssc1 - eig_ssc0
        eig_diff[np.abs(eig_diff) < np.max(np.abs(eig_diff)) *
                 REL_TOLERANCE] = 0.
        if np.any(eig_diff > 0):
            eig_test_fails += 1
            warn("mitigation making covariance worse, unacceptable")

        if eig_test_fails == 0:
            print("PASS: All sw eigenvalue sanity checks passed")
        else:
            raise RuntimeError("FAIL: " + str(pert_test_fails) +
                               " eigenvalue sanity checks failed")

        do_eig_interlace_check = True
        if do_eig_interlace_check:
            eig_interlace_fails_mit = 0
            eig_interlace_fails_no_mit = 0
            n_sw = mit_eigs_sw[0].size
            n_par = mit_eigs_par[0].size
            d_n = n_sw - n_par
            eig_l_mit_par = mit_eigs_par[0][::-1]
            eig_l_no_mit_par = no_mit_eigs_par[0][::-1]
            eig_l_mit_sw = mit_eigs_sw[0][::-1]
            eig_l_no_mit_sw = no_mit_eigs_sw[0][::-1]
            for i in range(0, n_par):
                if eig_l_mit_par[i] > eig_l_mit_sw[i]:
                    eig_interlace_fails_mit += 1
                if eig_l_no_mit_par[i] > eig_l_no_mit_sw[i]:
                    eig_interlace_fails_no_mit += 1
                if eig_l_mit_par[i] < eig_l_mit_sw[i + d_n]:
                    eig_interlace_fails_mit += 1
                if eig_l_no_mit_par[i] < eig_l_no_mit_sw[i + d_n]:
                    eig_interlace_fails_no_mit += 1
            if eig_interlace_fails_mit == 0 and eig_interlace_fails_no_mit == 0:
                print("PASS: All parameter eigenvalue interlace tests passed")
            else:
                raise RuntimeError(
                    "FAIL: " + str(eig_interlace_fails_mit) +
                    " mitigation and " + str(eig_interlace_fails_no_mit) +
                    " no mitigation failures in parameter eigenvalue interlace tests"
                )
Esempio n. 11
0
def test_agreement_with_sigma8():
    """test sigma8 works basic to jdem"""
    cosmo_base = defaults.cosmology_wmap.copy()
    cosmo_base = cp.add_derived_pars(cosmo_base, 'jdem')
    cosmo_base['de_model'] = 'constant_w'
    cosmo_base['w'] = -1.
    cosmo_base['sigma8'] = 0.7925070693605805
    power_params = defaults.power_params.copy()
    power_params.camb['maxkh'] = 3.
    power_params.camb['kmax'] = 10.
    power_params.camb['npoints'] = 1000
    power_params.camb['accuracy'] = 2
    power_params.camb['leave_h'] = False
    power_params_jdem = deepcopy(power_params)
    power_params_jdem.camb['force_sigma8'] = False
    power_params_basi = deepcopy(power_params)
    power_params_basi.camb['force_sigma8'] = True

    cosmo_jdem = cosmo_base.copy()
    cosmo_jdem['p_space'] = 'jdem'
    C_fid_jdem = cp.CosmoPie(cosmo_jdem, 'jdem')
    P_jdem = mps.MatterPower(C_fid_jdem, power_params_jdem)
    C_fid_jdem.set_power(P_jdem)

    cosmo_basi = cosmo_base.copy()
    cosmo_basi['p_space'] = 'basic'
    C_fid_basi = cp.CosmoPie(cosmo_basi, 'basic')
    P_basi = mps.MatterPower(C_fid_basi, power_params_basi)
    C_fid_basi.set_power(P_basi)

    zs = np.arange(0.2, 1.41, 0.40)
    z_fine = np.linspace(0.001, 1.4, 1000)

    geo_jdem = FullSkyGeo(zs, C_fid_jdem, z_fine)
    geo_basi = FullSkyGeo(zs, C_fid_basi, z_fine)

    jdem_pars = np.array(
        ['ns', 'Omegamh2', 'Omegabh2', 'OmegaLh2', 'LogAs', 'w'])
    jdem_eps = np.array([0.002, 0.00025, 0.0001, 0.00025, 0.01, 0.01])

    basi_pars = np.array(['ns', 'Omegamh2', 'Omegabh2', 'h', 'sigma8', 'w'])
    basi_eps = np.array([0.002, 0.00025, 0.0001, 0.00025, 0.001, 0.01])

    sw_params = defaults.sw_survey_params.copy()
    len_params = defaults.lensing_params.copy()
    sw_observable_list = defaults.sw_observable_list.copy()
    nz_wfirst_lens = NZWFirstEff(defaults.nz_params_wfirst_lens.copy())
    prior_params = defaults.prior_fisher_params.copy()
    basis_params = defaults.basis_params.copy()

    sw_survey_jdem = sws.SWSurvey(geo_jdem, 'wfirst', C_fid_jdem, sw_params,
                                  jdem_pars, jdem_eps, sw_observable_list,
                                  len_params, nz_wfirst_lens)

    sw_survey_basi = sws.SWSurvey(geo_basi, 'wfirst', C_fid_basi, sw_params,
                                  basi_pars, basi_eps, sw_observable_list,
                                  len_params, nz_wfirst_lens)
    #need to fix As because the code cannot presently do this
    for itr in range(0, basi_pars.size):
        for i in range(0, 2):
            cosmo_alt_basi = sw_survey_basi.len_pow.Cs_pert[
                itr, i].cosmology.copy()
            n_As = 10
            logAs = np.linspace(cosmo_alt_basi['LogAs'] * 0.9,
                                cosmo_alt_basi['LogAs'] * 1.1, n_As)
            As = np.exp(logAs)
            sigma8s = np.zeros(n_As)
            for itr2 in xrange(0, n_As):
                cosmo_alt_basi['As'] = As[itr2]
                cosmo_alt_basi['LogAs'] = logAs[itr2]
                sigma8s[itr2] = camb_sigma8(cosmo_alt_basi,
                                            power_params_basi.camb)
            logAs_interp = InterpolatedUnivariateSpline(sigma8s[::-1],
                                                        logAs[::-1],
                                                        ext=2,
                                                        k=3)

            sw_survey_basi.len_pow.Cs_pert[
                itr, i].cosmology['LogAs'] = logAs_interp(
                    sw_survey_basi.len_pow.Cs_pert[itr, i].cosmology['sigma8'])
            sw_survey_basi.len_pow.Cs_pert[itr, i].cosmology['As'] = np.exp(
                sw_survey_basi.len_pow.Cs_pert[itr, i].cosmology['LogAs'])

    dO_dpar_jdem = sw_survey_jdem.get_dO_I_dpar_array()
    dO_dpar_basi = sw_survey_basi.get_dO_I_dpar_array()

    response_pars = np.array([
        'ns', 'Omegach2', 'Omegabh2', 'Omegamh2', 'OmegaLh2', 'h', 'LogAs',
        'w', 'sigma8'
    ])

    l_max = 24

    r_max_jdem = geo_jdem.r_fine[-1]
    k_cut_jdem = 30. / r_max_jdem
    basis_jdem = SphBasisK(r_max_jdem,
                           C_fid_jdem,
                           k_cut_jdem,
                           basis_params,
                           l_ceil=l_max,
                           needs_m=True)
    SS_jdem = SuperSurvey(np.array([sw_survey_jdem]),
                          np.array([]),
                          basis_jdem,
                          C_fid_jdem,
                          prior_params,
                          get_a=False,
                          do_unmitigated=True,
                          do_mitigated=False)

    r_max_basi = geo_basi.r_fine[-1]
    k_cut_basi = 30. / r_max_basi
    basis_basi = SphBasisK(r_max_basi,
                           C_fid_basi,
                           k_cut_basi,
                           basis_params,
                           l_ceil=l_max,
                           needs_m=True)
    SS_basi = SuperSurvey(np.array([sw_survey_basi]),
                          np.array([]),
                          basis_basi,
                          C_fid_basi,
                          prior_params,
                          get_a=False,
                          do_unmitigated=True,
                          do_mitigated=False)

    #dO_dpar_jdem_to_basi = np.zeros_like(dO_dpar_jdem)
    #dO_dpar_basi_to_jdem = np.zeros_like(dO_dpar_basi)

    project_basi_to_jdem = np.zeros((jdem_pars.size, basi_pars.size))

    response_derivs_jdem = np.zeros((response_pars.size, jdem_pars.size))
    response_derivs_basi = np.zeros((response_pars.size, basi_pars.size))
    for i in range(0, response_pars.size):
        for j in range(0, jdem_pars.size):
            response_derivs_jdem[i, j] = (
                sw_survey_jdem.len_pow.Cs_pert[j,
                                               0].cosmology[response_pars[i]] -
                sw_survey_jdem.len_pow.Cs_pert[j, 1].cosmology[
                    response_pars[i]]) / (jdem_eps[j] * 2.)
            response_derivs_basi[i, j] = (
                sw_survey_basi.len_pow.Cs_pert[j,
                                               0].cosmology[response_pars[i]] -
                sw_survey_basi.len_pow.Cs_pert[j, 1].cosmology[
                    response_pars[i]]) / (basi_eps[j] * 2.)

    project_jdem_to_basi = np.zeros((basi_pars.size, jdem_pars.size))
    project_basi_to_jdem = np.zeros((jdem_pars.size, basi_pars.size))
    for itr1 in range(0, basi_pars.size):
        for itr2 in range(0, response_pars.size):
            if response_pars[itr2] in jdem_pars:
                name = response_pars[itr2]
                i = np.argwhere(jdem_pars == name)[0, 0]
                project_jdem_to_basi[itr1, i] = response_derivs_basi[itr2,
                                                                     itr1]
    for itr1 in range(0, jdem_pars.size):
        for itr2 in range(0, response_pars.size):
            if response_pars[itr2] in basi_pars:
                name = response_pars[itr2]
                i = np.argwhere(basi_pars == name)[0, 0]
                project_basi_to_jdem[itr1, i] = response_derivs_jdem[itr2,
                                                                     itr1]
    assert np.allclose(np.dot(dO_dpar_jdem, project_jdem_to_basi.T),
                       dO_dpar_basi,
                       rtol=1.e-3,
                       atol=np.max(dO_dpar_basi) * 1.e-4)
    assert np.allclose(np.dot(dO_dpar_basi, project_basi_to_jdem.T),
                       dO_dpar_jdem,
                       rtol=1.e-3,
                       atol=np.max(dO_dpar_jdem) * 1.e-4)

    #basi p_space cannot currently do priors by itself
    f_p_priors_basi = np.dot(
        project_jdem_to_basi,
        np.dot(SS_jdem.multi_f.fisher_priors.get_fisher(),
               project_jdem_to_basi.T))

    for i in range(0, 1):
        f_np_jdem = SS_jdem.f_set_nopriors[i][2].get_fisher().copy()
        f_np_basi = SS_basi.f_set_nopriors[i][2].get_fisher().copy()
        f_np_jdem_to_basi = np.dot(project_jdem_to_basi,
                                   np.dot(f_np_jdem, project_jdem_to_basi.T))
        f_np_basi_to_jdem = np.dot(project_basi_to_jdem,
                                   np.dot(f_np_basi, project_basi_to_jdem.T))
        assert np.allclose(f_np_jdem_to_basi, f_np_basi, rtol=1.e-2)
        assert np.allclose(f_np_basi_to_jdem, f_np_jdem, rtol=1.e-2)

        f_p_jdem = SS_jdem.f_set[i][2].get_fisher().copy()
        f_p_basi = SS_basi.f_set_nopriors[i][2].get_fisher().copy(
        ) + f_p_priors_basi.copy()
        f_p_jdem_to_basi = np.dot(project_jdem_to_basi,
                                  np.dot(f_p_jdem, project_jdem_to_basi.T))
        f_p_basi_to_jdem = np.dot(project_basi_to_jdem,
                                  np.dot(f_p_basi, project_basi_to_jdem.T))
        assert np.allclose(f_p_jdem_to_basi, f_p_basi, rtol=1.e-2)
        assert np.allclose(f_p_basi_to_jdem, f_p_jdem, rtol=1.e-2)
    print(f_np_jdem / f_np_basi_to_jdem)
    print(f_np_basi / f_np_jdem_to_basi)
Esempio n. 12
0
    def __init__(self):
        """ do power derivative comparison"""
        power_params = defaults.power_params.copy()
        power_params.camb['force_sigma8'] = True
        power_params.camb['leave_h'] = False
        power_params.camb['npoints'] = 1000
        C = cp.CosmoPie(cosmology=COSMOLOGY_CHIANG, p_space='basic')
        epsilon = 0.01
        P_a = mps.MatterPower(C, power_params)
        k_a = P_a.k
        C.k = k_a
        k_a_h = P_a.k / C.cosmology['h']

        d_chiang_halo = np.loadtxt('test_inputs/dp_1/dp_chiang_halofit.dat')
        k_chiang_halo = d_chiang_halo[:, 0] * C.cosmology['h']
        dc_chiang_halo = d_chiang_halo[:, 1]
        dc_ch1 = interp1d(k_chiang_halo, dc_chiang_halo,
                          bounds_error=False)(k_a)
        d_chiang_lin = np.loadtxt('test_inputs/dp_1/dp_chiang_linear.dat')
        k_chiang_lin = d_chiang_lin[:, 0] * C.cosmology['h']
        dc_chiang_lin = d_chiang_lin[:, 1]
        dc_ch2 = interp1d(k_chiang_lin, dc_chiang_lin, bounds_error=False)(k_a)
        d_chiang_fpt = np.loadtxt('test_inputs/dp_1/dp_chiang_oneloop.dat')
        k_chiang_fpt = d_chiang_fpt[:, 0] * C.cosmology['h']
        dc_chiang_fpt = d_chiang_fpt[:, 1]
        dc_ch3 = interp1d(k_chiang_fpt, dc_chiang_fpt, bounds_error=False)(k_a)
        do_plots = True
        if do_plots:
            import matplotlib.pyplot as plt
        zbar = np.array([3.])
        dcalt1, p1a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='linear',
                                    epsilon=epsilon)
        dcalt2, p2a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='halofit',
                                    epsilon=epsilon)
        dcalt3, p3a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='fastpt',
                                    epsilon=epsilon)
        if do_plots:
            ax = plt.subplot(221)
            plt.xlim([0., 0.4])
            plt.ylim([1.2, 3.2])
            plt.grid()
            plt.title('z=3.0')
            ax.plot(k_a_h, abs(dcalt1 / p1a))
            ax.plot(k_a_h, abs(dcalt2 / p2a))
            ax.plot(k_a_h, abs(dcalt3 / p3a))

        zbar = np.array([2.])
        dcalt1, p1a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='linear',
                                    epsilon=epsilon)
        dcalt2, p2a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='halofit',
                                    epsilon=epsilon)
        dcalt3, p3a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='fastpt',
                                    epsilon=epsilon)

        if do_plots:
            ax = plt.subplot(222)
            plt.xlim([0., 0.4])
            plt.ylim([1.2, 3.2])
            plt.grid()
            plt.title('z=2.0')
            ax.plot(k_a_h, abs(dcalt1 / p1a))
            ax.plot(k_a_h, abs(dcalt2 / p2a))
            ax.plot(k_a_h, abs(dcalt3 / p3a))

        zbar = np.array([1.])
        dcalt1, p1a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='linear',
                                    epsilon=epsilon)
        dcalt2, p2a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='halofit',
                                    epsilon=epsilon)
        dcalt3, p3a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='fastpt',
                                    epsilon=epsilon)
        if do_plots:
            ax = plt.subplot(223)
            plt.xlim([0., 0.4])
            plt.ylim([1.2, 3.2])
            plt.grid()
            plt.title('z=1.0')
            ax.set_xlabel('k h Mpc^-1')
            ax.set_ylabel('dln(P)/ddeltabar')
            ax.plot(k_a_h, abs(dcalt1 / p1a))
            ax.plot(k_a_h, abs(dcalt2 / p2a))
            ax.plot(k_a_h, abs(dcalt3 / p3a))
            ax.plot(k_a_h, dc_ch1)
            ax.plot(k_a_h, dc_ch2)
            ax.plot(k_a_h, dc_ch3)
            plt.legend([
                'linear', 'halofit', 'fastpt', 'halo_chiang', "lin_chiang",
                "fpt_chiang"
            ],
                       loc=4)
        mask_mult = (k_a_h > 0.) * (k_a_h < 0.4)
        rat_halofit = (dc_ch1 / abs(dcalt2 / p2a)[:, 0])[mask_mult]
        rat_linear = (dc_ch2 / abs(dcalt1 / p1a)[:, 0])[mask_mult]
        rat_fpt = (dc_ch3 / abs(dcalt3 / p3a)[:, 0])[mask_mult]
        zbar = np.array([0.])
        dcalt1, p1a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='linear',
                                    epsilon=epsilon)
        dcalt2, p2a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='halofit',
                                    epsilon=epsilon)
        dcalt3, p3a = shp.dp_ddelta(P_a,
                                    zbar,
                                    C=C,
                                    pmodel='fastpt',
                                    epsilon=epsilon)
        if do_plots:
            ax = plt.subplot(224)
            plt.xlim([0., 0.4])
            plt.ylim([1.2, 3.2])
            plt.grid()
            plt.title('z=0.0')
            ax.plot(k_a_h, abs(dcalt1 / p1a))
            ax.plot(k_a_h, abs(dcalt2 / p2a))
            ax.plot(k_a_h, abs(dcalt3 / p3a))
        #plt.legend(['linear','halofit','fastpt'],loc=4)
        if do_plots:
            plt.show()
        k_a_halofit = k_a_h[mask_mult][~np.isnan(rat_halofit)]
        k_a_linear = k_a_h[mask_mult][~np.isnan(rat_linear)]
        k_a_fpt = k_a_h[mask_mult][~np.isnan(rat_fpt)]
        dkh = 0.05
        halofit_bins = np.zeros(7)
        linear_bins = np.zeros(7)
        fpt_bins = np.zeros(7)
        for itr in range(1, 8):
            mask_loc_hf = (k_a_halofit < dkh *
                           (itr + 1.)) * (k_a_halofit >= dkh * itr)
            mask_loc_lin = (k_a_linear < dkh *
                            (itr + 1.)) * (k_a_linear >= dkh * itr)
            mask_loc_fpt = (k_a_fpt < dkh *
                            (itr + 1.)) * (k_a_fpt >= dkh * itr)
            halofit_bins[itr - 1] = np.average(
                rat_halofit[~np.isnan(rat_halofit)][mask_loc_hf])
            linear_bins[itr - 1] = np.average(
                rat_linear[~np.isnan(rat_linear)][mask_loc_lin])
            fpt_bins[itr - 1] = np.average(
                rat_fpt[~np.isnan(rat_fpt)][mask_loc_fpt])
        #print(np.abs(halofit_bins-1.))
        #print(np.abs(linear_bins-1.))
        #print(np.abs(fpt_bins-1.))
        fails = 0
        if np.all(np.abs(halofit_bins - 1.) < 0.02):
            print("PASS: smoothed z=1 halofit matches chiang")
        else:
            fails += 1
            print("FAIL: smoothed z=1 halofit does not match chiang")
        if np.all(np.abs(linear_bins - 1.) < 0.02):
            print("PASS: smoothed z=1 linear matches chiang")
        else:
            fails += 1
            print("FAIL: smoothed z=1 linear does not match chiang")
        if np.all(np.abs(fpt_bins - 1.) < 0.02):
            print("PASS: smoothed z=1 fastpt matches chiang")
        else:
            fails += 1
            print("FAIL: smoothed z=1 fastpt does not match chiang")
        if fails == 0:
            print("PASS: all tests satisfactory")
        else:
            print("FAIL: " + str(fails) + " tests unsatisfactory")
            #for some reason the discrepancy is a function of pivot_scalar and is minimizaed around pivot_scalar=0.01-0.0001
            rtol = 3.e-3
            eps = 0.01

            cosmo_fid = defaults.cosmology.copy()
            camb_params = defaults.camb_params.copy()
            camb_params['force_sigma8'] = param[0]
            camb_params['leave_h'] = param[1]
            camb_params['npoints'] = 3000
            camb_params['kmax'] = 2.
            camb_params['maxkh'] = 2.
            power_params = defaults.power_params.copy()
            power_params.camb = camb_params
            #camb_params['minkh'] = 1e-3

            C_fid = cp.CosmoPie(cosmo_fid, p_space='jdem')
            P_fid = mps.MatterPower(C_fid, power_params)
            k_fid = P_fid.k
            C_fid.set_power(P_fid)
            P_lin1 = P_fid.get_matter_power(np.array([0.]), pmodel='linear')[:,
                                                                             0]

            P_res1 = P_fid.get_matter_power(np.array([0.]), pmodel=param[2])[:,
                                                                             0]
            if param[2] == 'halofit':
                nonlinear_model = camb.model.NonLinear_both
            else:
                nonlinear_model = camb.model.NonLinear_none

            k_res2, P_res2 = camb_pow(C_fid.cosmology,
                                      zbar=np.array([0.]),
Esempio n. 14
0
def test_cosmosis_match():
    """test agreement with modified cosmosis demo 15 results
    assuming gaussian matter distribution with sigma=0.4 and average z=1
    use halofit power spectrum grid"""
    TOLERANCE_MAX = 0.2
    TOLERANCE_MEAN = 0.2
    power_params = defaults.power_params.copy()
    power_params.camb['force_sigma8'] = True
    power_params.camb['maxkh'] = 25000
    power_params.camb['kmax'] = 100.
    power_params.camb['npoints'] = 3200
    C = cp.CosmoPie(cosmology=COSMOLOGY_COSMOSIS2.copy(), p_space='jdem')
    P_in = mps.MatterPower(C, power_params)
    #k_in = P_in.k
    C.set_power(P_in)
    zs = np.loadtxt('test_inputs/proj_2/z.txt')
    zs[0] = 10**-3

    ls = np.loadtxt('test_inputs/proj_2/ell.txt')
    f_sky = np.pi / (3. * np.sqrt(2.))
    params = defaults.lensing_params.copy()
    params['zbar'] = 1.0
    params['sigma'] = 0.40
    params['smodel'] = 'gaussian'
    params['l_min'] = np.min(ls)
    params['l_max'] = np.max(ls)
    params['n_l'] = ls.size
    params['n_gal'] = 118000000 * 6.
    params['pmodel'] = 'halofit'

    sh_pow1 = np.loadtxt('test_inputs/proj_2/ss_pow.txt')
    sh_pow1_gg = np.loadtxt('test_inputs/proj_2/gg_pow.txt')
    sh_pow1_sg = np.loadtxt('test_inputs/proj_2/sg_pow.txt')
    sh_pow1_mm = np.loadtxt('test_inputs/proj_2/mm_pow.txt') / C.h

    sp2 = sp.ShearPower(C, zs, f_sky, params, mode='power')

    q_sh = lw.QShear(sp2)
    q_num = lw.QNum(sp2)
    q_mag = lw.QMag(sp2)
    sh_pow2 = sp.Cll_q_q(sp2, q_sh, q_sh).Cll()
    sh_pow2_gg = sp.Cll_q_q(sp2, q_num, q_num).Cll()
    sh_pow2_sg = sp.Cll_q_q(sp2, q_sh, q_num).Cll()
    sh_pow2_mm = sp.Cll_q_q(sp2, q_mag, q_mag).Cll()

    #get ratio of calculated value to expected value from cosmosis
    #use -np.inf as filler for interpolation when l value is not in ls*C.h,filter it later
    ss_rat = (sh_pow2 - sh_pow1) / sh_pow2

    gg_rat = (sh_pow2_gg - sh_pow1_gg) / sh_pow2_gg
    sg_rat = (sh_pow2_sg - sh_pow1_sg) / sh_pow2_sg
    mm_rat = (sh_pow2_mm - sh_pow1_mm) / sh_pow2_mm
    print(sh_pow2)
    mean_ss_err = np.mean(abs(ss_rat)[abs(ss_rat) < np.inf])
    mean_gg_err = np.mean(abs(gg_rat)[abs(gg_rat) < np.inf])
    mean_sg_err = np.mean(abs(sg_rat)[abs(sg_rat) < np.inf])
    mean_mm_err = np.mean(abs(mm_rat)[abs(mm_rat) < np.inf])

    max_ss_err = max((abs(ss_rat))[abs(ss_rat) < np.inf])
    max_gg_err = max((abs(gg_rat))[abs(gg_rat) < np.inf])
    max_sg_err = max((abs(sg_rat))[abs(sg_rat) < np.inf])
    max_mm_err = max((abs(mm_rat))[abs(mm_rat) < np.inf])

    print("ss agreement within: " + str(max_ss_err * 100.) + "%" +
          " mean agreement: " + str(mean_ss_err * 100.) + "%")
    print("gg agreement within: " + str(max_gg_err * 100.) + "%" +
          " mean agreement: " + str(mean_gg_err * 100.) + "%")
    print("sg agreement within: " + str(max_sg_err * 100.) + "%" +
          " mean agreement: " + str(mean_sg_err * 100.) + "%")
    print("mm agreement within: " + str(max_mm_err * 100.) + "%" +
          " mean agreement: " + str(mean_mm_err * 100.) + "%")

    assert max_ss_err < TOLERANCE_MAX
    assert max_gg_err < TOLERANCE_MAX
    assert max_sg_err < TOLERANCE_MAX
    assert max_mm_err < TOLERANCE_MAX
    assert mean_ss_err < TOLERANCE_MEAN
    assert mean_gg_err < TOLERANCE_MEAN
    assert mean_sg_err < TOLERANCE_MEAN
    assert mean_mm_err < TOLERANCE_MEAN
def get_perturbed_cosmopies(C_fid,
                            pars,
                            epsilons,
                            log_par_derivs=None,
                            override_safe=False):
    """get set of 2 perturbed cosmopies, above and below (including camb linear power spectrum) for getting partial derivatives
        using central finite difference method
        inputs:
            C_fid: the fiducial CosmoPie
            pars: an array of the names of parameters to change
            epsilons: an array of step sizes correspondings to pars
            log_par_derivs: if True for a given element of pars will do log derivative in the parameter
            override_safe: if True do not borrow the growth factor or power spectrum from C_fid even if we could
    """
    cosmo_fid = C_fid.cosmology.copy()
    P_fid = C_fid.P_lin
    k_fid = C_fid.k

    power_params = P_fid.power_params.copy()

    #default assumption is ordinary derivative, can do log deriv in parameter also
    #if log_par_derivs[i]==True, will do log deriv
    if log_par_derivs is not None and log_par_derivs.size != pars.size:
        raise ValueError('invalid input log_par_derivs ' + str(log_par_derivs))
    elif log_par_derivs is None:
        log_par_derivs = np.zeros(pars.size, dtype=bool)

    Cs_pert = np.zeros((pars.size, 2), dtype=object)

    for i in range(0, pars.size):
        cosmo_a = get_perturbed_cosmology(cosmo_fid, pars[i], epsilons[i],
                                          log_par_derivs[i])
        cosmo_b = get_perturbed_cosmology(cosmo_fid, pars[i], -epsilons[i],
                                          log_par_derivs[i])

        #set cosmopie power spectrum appropriately
        #avoid unnecessarily recomputing growth factors if they won't change. If growth factors don't change neither will w matching
        if pars[i] in cp.GROW_SAFE and not override_safe:
            C_a = cp.CosmoPie(cosmo_a,
                              p_space=cosmo_fid['p_space'],
                              G_safe=True,
                              G_in=C_fid.G_p)
            C_b = cp.CosmoPie(cosmo_b,
                              p_space=cosmo_fid['p_space'],
                              G_safe=True,
                              G_in=C_fid.G_p)
            P_a = mps.MatterPower(C_a,
                                  power_params,
                                  k_in=k_fid,
                                  wm_in=P_fid.wm,
                                  de_perturbative=True)
            P_b = mps.MatterPower(C_b,
                                  power_params,
                                  k_in=k_fid,
                                  wm_in=P_fid.wm,
                                  de_perturbative=True)
        else:
            C_a = cp.CosmoPie(cosmo_a, p_space=cosmo_fid['p_space'])
            C_b = cp.CosmoPie(cosmo_b, p_space=cosmo_fid['p_space'])
            #avoid unnecessarily recomputing WMatchers for dark energy related parameters, and unnecessarily calling camb
            if pars[i] in cp.DE_SAFE and not override_safe:
                P_a = mps.MatterPower(C_a,
                                      power_params,
                                      k_in=k_fid,
                                      wm_in=P_fid.wm,
                                      P_fid=P_fid,
                                      camb_safe=True)
                P_b = mps.MatterPower(C_b,
                                      power_params,
                                      k_in=k_fid,
                                      wm_in=P_fid.wm,
                                      P_fid=P_fid,
                                      camb_safe=True)
            else:
                P_a = mps.MatterPower(C_a,
                                      power_params,
                                      k_in=k_fid,
                                      de_perturbative=True)
                P_b = mps.MatterPower(C_b,
                                      power_params,
                                      k_in=k_fid,
                                      de_perturbative=True)
        #k_a = P_a.k
        #k_b = P_b.k

        C_a.set_power(P_a)
        C_b.set_power(P_b)

        Cs_pert[i, 0] = C_a
        Cs_pert[i, 1] = C_b
    return Cs_pert
Esempio n. 16
0
def test_pipeline_consistency():
    """test full pipeline consistency with rotation jdem vs lihu"""
    cosmo_base = defaults.cosmology_wmap.copy()
    cosmo_base = cp.add_derived_pars(cosmo_base, 'jdem')
    cosmo_base['de_model'] = 'constant_w'
    cosmo_base['w'] = -1.
    power_params = defaults.power_params.copy()
    power_params.camb['maxkh'] = 1.
    power_params.camb['kmax'] = 1.
    power_params.camb['npoints'] = 1000
    power_params.camb['accuracy'] = 2
    power_params.camb['leave_h'] = False

    cosmo_jdem = cosmo_base.copy()
    cosmo_jdem['p_space'] = 'jdem'
    C_fid_jdem = cp.CosmoPie(cosmo_jdem, 'jdem')
    P_jdem = mps.MatterPower(C_fid_jdem, power_params.copy())
    C_fid_jdem.set_power(P_jdem)

    cosmo_lihu = cosmo_base.copy()
    cosmo_lihu['p_space'] = 'lihu'
    C_fid_lihu = cp.CosmoPie(cosmo_lihu, 'lihu')
    P_lihu = mps.MatterPower(C_fid_lihu, power_params.copy())
    C_fid_lihu.set_power(P_lihu)

    zs = np.arange(0.2, 1.41, 0.40)
    z_fine = np.linspace(0.001, 1.4, 1000)

    geo_jdem = FullSkyGeo(zs, C_fid_jdem, z_fine)
    geo_lihu = FullSkyGeo(zs, C_fid_lihu, z_fine)

    jdem_pars = np.array(
        ['ns', 'Omegamh2', 'Omegabh2', 'OmegaLh2', 'LogAs', 'w'])
    jdem_eps = np.array([0.002, 0.00025, 0.0001, 0.00025, 0.1, 0.01])

    lihu_pars = np.array(['ns', 'Omegach2', 'Omegabh2', 'h', 'LogAs', 'w'])
    lihu_eps = np.array([0.002, 0.00025, 0.0001, 0.00025, 0.1, 0.01])

    sw_params = defaults.sw_survey_params.copy()
    len_params = defaults.lensing_params.copy()
    sw_observable_list = defaults.sw_observable_list.copy()
    nz_wfirst_lens = NZWFirstEff(defaults.nz_params_wfirst_lens.copy())
    prior_params = defaults.prior_fisher_params.copy()
    basis_params = defaults.basis_params.copy()

    sw_survey_jdem = sws.SWSurvey(geo_jdem, 'wfirst', C_fid_jdem, sw_params,
                                  jdem_pars, jdem_eps, sw_observable_list,
                                  len_params, nz_wfirst_lens)
    sw_survey_lihu = sws.SWSurvey(geo_lihu, 'wfirst', C_fid_lihu, sw_params,
                                  lihu_pars, lihu_eps, sw_observable_list,
                                  len_params, nz_wfirst_lens)

    #dO_dpar_jdem = sw_survey_jdem.get_dO_I_dpar_array()
    #dO_dpar_lihu = sw_survey_lihu.get_dO_I_dpar_array()

    response_pars = np.array([
        'ns', 'Omegach2', 'Omegabh2', 'Omegamh2', 'OmegaLh2', 'h', 'LogAs', 'w'
    ])
    response_derivs_jdem_pred = np.array(
        [[1., 0., 0., 0., 0., 0., 0., 0.],
         [0., 1., 0., 1., 0., 1. / (2. * C_fid_jdem.cosmology['h']), 0., 0.],
         [0., -1., 1., 0., 0., 0., 0., 0.],
         [0., 0., 0., 0., 1., 1. / (2. * C_fid_jdem.cosmology['h']), 0., 0.],
         [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 1.]]).T
    response_derivs_lihu_pred = np.array(
        [[1., 0., 0., 0., 0., 0., 0., 0.], [0., 1., 0., 1., -1., 0., 0., 0.],
         [0., 0., 1., 1., -1., 0., 0., 0.],
         [0., 0., 0., 0., 2. * C_fid_lihu.cosmology['h'], 1., 0., 0.],
         [0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 1.]]).T

    l_max = 24

    r_max_jdem = geo_jdem.r_fine[-1]
    k_cut_jdem = 30. / r_max_jdem
    basis_jdem = SphBasisK(r_max_jdem,
                           C_fid_jdem,
                           k_cut_jdem,
                           basis_params,
                           l_ceil=l_max,
                           needs_m=True)
    SS_jdem = SuperSurvey(np.array([sw_survey_jdem]),
                          np.array([]),
                          basis_jdem,
                          C_fid_jdem,
                          prior_params,
                          get_a=False,
                          do_unmitigated=True,
                          do_mitigated=False)

    r_max_lihu = geo_lihu.r_fine[-1]
    k_cut_lihu = 30. / r_max_lihu
    basis_lihu = SphBasisK(r_max_lihu,
                           C_fid_lihu,
                           k_cut_lihu,
                           basis_params,
                           l_ceil=l_max,
                           needs_m=True)
    SS_lihu = SuperSurvey(np.array([sw_survey_lihu]),
                          np.array([]),
                          basis_lihu,
                          C_fid_lihu,
                          prior_params,
                          get_a=False,
                          do_unmitigated=True,
                          do_mitigated=False)

    #dO_dpar_jdem_to_lihu = np.zeros_like(dO_dpar_jdem)
    #dO_dpar_lihu_to_jdem = np.zeros_like(dO_dpar_lihu)

    project_lihu_to_jdem = np.zeros((jdem_pars.size, lihu_pars.size))

    #f_g_jdem_to_lihu = np.zeros((lihu_pars.size,lihu_pars.size))
    #f_g_lihu_to_jdem = np.zeros((jdem_pars.size,jdem_pars.size))
    response_derivs_jdem = np.zeros((response_pars.size, jdem_pars.size))
    response_derivs_lihu = np.zeros((response_pars.size, lihu_pars.size))
    for i in range(0, response_pars.size):
        for j in range(0, jdem_pars.size):
            response_derivs_jdem[i, j] = (
                sw_survey_jdem.len_pow.Cs_pert[j,
                                               0].cosmology[response_pars[i]] -
                sw_survey_jdem.len_pow.Cs_pert[j, 1].cosmology[
                    response_pars[i]]) / (jdem_eps[j] * 2.)
            response_derivs_lihu[i, j] = (
                sw_survey_lihu.len_pow.Cs_pert[j,
                                               0].cosmology[response_pars[i]] -
                sw_survey_lihu.len_pow.Cs_pert[j, 1].cosmology[
                    response_pars[i]]) / (lihu_eps[j] * 2.)
    assert np.allclose(response_derivs_jdem, response_derivs_jdem_pred)
    assert np.allclose(response_derivs_lihu, response_derivs_lihu_pred)

    project_jdem_to_lihu = np.zeros((lihu_pars.size, jdem_pars.size))
    project_lihu_to_jdem = np.zeros((jdem_pars.size, lihu_pars.size))
    for itr1 in range(0, lihu_pars.size):
        for itr2 in range(0, response_pars.size):
            if response_pars[itr2] in jdem_pars:
                name = response_pars[itr2]
                i = np.argwhere(jdem_pars == name)[0, 0]
                project_jdem_to_lihu[itr1, i] = response_derivs_lihu[itr2,
                                                                     itr1]
    for itr1 in range(0, jdem_pars.size):
        for itr2 in range(0, response_pars.size):
            if response_pars[itr2] in lihu_pars:
                name = response_pars[itr2]
                i = np.argwhere(lihu_pars == name)[0, 0]
                project_lihu_to_jdem[itr1, i] = response_derivs_jdem[itr2,
                                                                     itr1]
    #assert np.allclose(np.dot(dO_dpar_jdem,project_jdem_to_lihu.T),dO_dpar_lihu,rtol=1.e-3,atol=np.max(dO_dpar_lihu)*1.e-4)
    #assert np.allclose(np.dot(dO_dpar_lihu,project_lihu_to_jdem.T),dO_dpar_jdem,rtol=1.e-3,atol=np.max(dO_dpar_jdem)*1.e-4)

    #lihu p_space cannot currently do priors by itself
    f_p_priors_lihu = np.dot(
        project_jdem_to_lihu,
        np.dot(SS_jdem.multi_f.fisher_priors.get_fisher(),
               project_jdem_to_lihu.T))

    f_set_jdem_in = np.zeros(3, dtype=object)
    f_set_lihu_in = np.zeros(3, dtype=object)
    for i in range(0, 3):
        f_set_jdem_in[i] = SS_jdem.f_set_nopriors[i][2].get_fisher().copy()
        f_set_lihu_in[i] = SS_lihu.f_set_nopriors[i][2].get_fisher().copy()

    f_np_lihu2 = rotate_jdem_to_lihu(f_set_jdem_in, C_fid_jdem)
    f_np_jdem2 = rotate_lihu_to_jdem(f_set_lihu_in, C_fid_lihu)
    f_np_lihu3 = rotate_jdem_to_lihu(f_np_jdem2, C_fid_jdem)
    f_np_jdem3 = rotate_lihu_to_jdem(f_np_lihu2, C_fid_lihu)

    for i in range(0, 3):
        f_np_jdem = SS_jdem.f_set_nopriors[i][2].get_fisher().copy()
        f_np_lihu = SS_lihu.f_set_nopriors[i][2].get_fisher().copy()
        f_np_jdem_to_lihu = np.dot(project_jdem_to_lihu,
                                   np.dot(f_np_jdem, project_jdem_to_lihu.T))
        f_np_lihu_to_jdem = np.dot(project_lihu_to_jdem,
                                   np.dot(f_np_lihu, project_lihu_to_jdem.T))
        assert np.allclose(f_set_lihu_in[i], f_np_lihu3[i])
        assert np.allclose(f_set_jdem_in[i], f_np_jdem3[i])
        assert np.allclose(f_np_jdem_to_lihu, f_np_lihu2[i])
        assert np.allclose(f_np_lihu_to_jdem, f_np_jdem2[i])
        assert np.allclose(f_np_jdem_to_lihu, f_np_lihu, rtol=1.e-3)
        assert np.allclose(f_np_lihu_to_jdem, f_np_jdem, rtol=1.e-3)
        assert np.allclose(f_set_lihu_in[i], f_np_lihu2[i], rtol=1.e-3)
        assert np.allclose(f_set_jdem_in[i], f_np_jdem2[i], rtol=1.e-3)
        assert np.allclose(f_np_jdem3[i], f_np_jdem2[i], rtol=1.e-3)
        assert np.allclose(f_np_lihu3[i], f_np_lihu2[i], rtol=1.e-3)
        f_p_jdem = SS_jdem.f_set[i][2].get_fisher().copy()
        f_p_lihu = SS_lihu.f_set_nopriors[i][2].get_fisher().copy(
        ) + f_p_priors_lihu.copy()
        f_p_jdem_to_lihu = np.dot(project_jdem_to_lihu,
                                  np.dot(f_p_jdem, project_jdem_to_lihu.T))
        f_p_lihu_to_jdem = np.dot(project_lihu_to_jdem,
                                  np.dot(f_p_lihu, project_lihu_to_jdem.T))
        assert np.allclose(f_p_jdem_to_lihu, f_p_lihu, rtol=1.e-3)
        assert np.allclose(f_p_lihu_to_jdem, f_p_jdem, rtol=1.e-3)
Esempio n. 17
0
def test_power_derivative():
    """test that the power derivatives agree with chiang&wagner arxiv:1403.3411v2 figure 4-5"""
    power_params = defaults.power_params.copy()
    power_params.camb['force_sigma8'] = True
    power_params.camb['leave_h'] = False
    power_params.camb['npoints'] = 1000
    C = cp.CosmoPie(cosmology=COSMOLOGY_CHIANG, p_space='basic')
    #d = np.loadtxt('camb_m_pow_l.dat')
    #k_in = d[:,0]
    epsilon = 0.01
    #k_a,P_a = cpow.camb_pow(cosmo_a)
    P_a = mps.MatterPower(C, power_params)
    k_a = P_a.k
    C.k = k_a
    k_a_h = P_a.k / C.cosmology['h']

    pmodels = ['linear', 'halofit', 'fastpt']
    for pmodel in pmodels:
        z0 = 0.
        hold0 = shp.dp_ddelta(P_a, z0, C, pmodel, epsilon)
        z1 = np.array([0.])
        hold1 = shp.dp_ddelta(P_a, z1, C, pmodel, epsilon)
        z2 = np.array([0., 0.001])
        hold2 = shp.dp_ddelta(P_a, z2, C, pmodel, epsilon)
        z3 = np.arange(0., 1., 0.001)
        hold3 = shp.dp_ddelta(P_a, z3, C, pmodel, epsilon)
        assert np.allclose(hold0[0], hold1[0][:, 0])
        assert np.allclose(hold1[0][:, 0], hold2[0][:, 0])
        assert np.allclose(hold1[0][:, 0], hold3[0][:, 0])
        assert np.allclose(hold2[0][:, 1], hold3[0][:, 1])
        assert np.allclose(hold1[1][:, 0], hold1[1][:, 0])
        assert np.allclose(hold1[1][:, 0], hold2[1][:, 0])
        assert np.allclose(hold1[1][:, 0], hold3[1][:, 0])
        assert np.allclose(hold2[1][:, 1], hold3[1][:, 1])

    d_chiang_halo = np.loadtxt('test_inputs/dp_1/dp_chiang_halofit.dat')
    k_chiang_halo = d_chiang_halo[:, 0] * C.cosmology['h']
    dc_chiang_halo = d_chiang_halo[:, 1]
    dc_ch1 = interp1d(k_chiang_halo, dc_chiang_halo, bounds_error=False)(k_a)
    d_chiang_lin = np.loadtxt('test_inputs/dp_1/dp_chiang_linear.dat')
    k_chiang_lin = d_chiang_lin[:, 0] * C.cosmology['h']
    dc_chiang_lin = d_chiang_lin[:, 1]
    dc_ch2 = interp1d(k_chiang_lin, dc_chiang_lin, bounds_error=False)(k_a)
    d_chiang_fpt = np.loadtxt('test_inputs/dp_1/dp_chiang_oneloop.dat')
    k_chiang_fpt = d_chiang_fpt[:, 0] * C.cosmology['h']
    dc_chiang_fpt = d_chiang_fpt[:, 1]
    dc_ch3 = interp1d(k_chiang_fpt, dc_chiang_fpt, bounds_error=False)(k_a)

    zbar = np.array([1.])
    dcalt1, p1a = shp.dp_ddelta(P_a,
                                zbar,
                                C=C,
                                pmodel='linear',
                                epsilon=epsilon)
    dcalt2, p2a = shp.dp_ddelta(P_a,
                                zbar,
                                C=C,
                                pmodel='halofit',
                                epsilon=epsilon)
    dcalt3, p3a = shp.dp_ddelta(P_a,
                                zbar,
                                C=C,
                                pmodel='fastpt',
                                epsilon=epsilon)

    mask_mult = (k_a_h > 0.) * (k_a_h < 0.4)
    rat_halofit = (dc_ch1 / abs(dcalt2 / p2a)[:, 0])[mask_mult]
    rat_linear = (dc_ch2 / abs(dcalt1 / p1a)[:, 0])[mask_mult]
    rat_fpt = (dc_ch3 / abs(dcalt3 / p3a)[:, 0])[mask_mult]

    k_a_halofit = k_a_h[mask_mult][~np.isnan(rat_halofit)]
    k_a_linear = k_a_h[mask_mult][~np.isnan(rat_linear)]
    k_a_fpt = k_a_h[mask_mult][~np.isnan(rat_fpt)]
    dkh = 0.05
    halofit_bins = np.zeros(7)
    linear_bins = np.zeros(7)
    fpt_bins = np.zeros(7)
    for itr in range(1, 8):
        mask_loc_hf = (k_a_halofit < dkh *
                       (itr + 1.)) * (k_a_halofit >= dkh * itr)
        mask_loc_lin = (k_a_linear < dkh *
                        (itr + 1.)) * (k_a_linear >= dkh * itr)
        mask_loc_fpt = (k_a_fpt < dkh * (itr + 1.)) * (k_a_fpt >= dkh * itr)
        halofit_bins[itr - 1] = np.average(
            rat_halofit[~np.isnan(rat_halofit)][mask_loc_hf])
        linear_bins[itr - 1] = np.average(
            rat_linear[~np.isnan(rat_linear)][mask_loc_lin])
        fpt_bins[itr - 1] = np.average(
            rat_fpt[~np.isnan(rat_fpt)][mask_loc_fpt])
    assert np.all(np.abs(halofit_bins - 1.) < 0.02)
    assert np.all(np.abs(linear_bins - 1.) < 0.02)
    assert np.all(np.abs(fpt_bins - 1.) < 0.02)
Esempio n. 18
0
def test_power_agreement():
    """test agreement of powers extracted in two different cosmological parametrizations"""
    cosmo_base = defaults.cosmology_wmap.copy()
    cosmo_base = cp.add_derived_pars(cosmo_base, 'jdem')
    cosmo_base['de_model'] = 'constant_w'
    cosmo_base['w'] = -1.
    power_params = defaults.power_params.copy()
    power_params.camb['maxkh'] = 3.
    power_params.camb['kmax'] = 10.
    power_params.camb['npoints'] = 1000
    power_params.camb['accuracy'] = 2
    power_params.camb['leave_h'] = False

    cosmo_jdem = cosmo_base.copy()
    cosmo_jdem['p_space'] = 'jdem'
    C_fid_jdem = cp.CosmoPie(cosmo_jdem, 'jdem')
    P_jdem = mps.MatterPower(C_fid_jdem, power_params.copy())
    C_fid_jdem.set_power(P_jdem)

    cosmo_lihu = cosmo_base.copy()
    cosmo_lihu['p_space'] = 'lihu'
    C_fid_lihu = cp.CosmoPie(cosmo_lihu, 'lihu')
    P_lihu = mps.MatterPower(C_fid_lihu, power_params.copy())
    C_fid_lihu.set_power(P_lihu)

    jdem_pars = np.array(['ns', 'Omegamh2', 'Omegabh2', 'OmegaLh2', 'LogAs'])
    jdem_eps = np.array([0.002, 0.00025, 0.0001, 0.00025, 0.1])
    C_pert_jdem = ppr.get_perturbed_cosmopies(C_fid_jdem, jdem_pars, jdem_eps)

    lihu_pars = np.array(['ns', 'Omegach2', 'Omegabh2', 'h', 'LogAs'])
    lihu_eps = np.array([0.002, 0.00025, 0.0001, 0.00025, 0.1])
    C_pert_lihu = ppr.get_perturbed_cosmopies(C_fid_lihu, lihu_pars, lihu_eps)

    response_pars = np.array(
        ['Omegach2', 'Omegabh2', 'Omegamh2', 'OmegaLh2', 'h'])
    response_derivs_jdem = np.zeros((response_pars.size, 3))
    response_derivs_jdem_pred = np.array(
        [[1., 0., 1., 0., 1. / (2. * C_fid_jdem.cosmology['h'])],
         [-1., 1., 0., 0., 0.],
         [0., 0., 0., 1., 1. / (2. * C_fid_jdem.cosmology['h'])]]).T
    response_derivs_lihu = np.zeros((response_pars.size, 3))
    response_derivs_lihu_pred = np.array(
        [[1., 0., 1., -1., 0.], [0., 1., 1., -1., 0.],
         [0., 0., 0., 2. * C_fid_lihu.cosmology['h'], 1.]]).T
    for i in range(0, response_pars.size):
        for j in range(1, 4):
            response_derivs_jdem[i, j - 1] = (
                C_pert_jdem[j, 0].cosmology[response_pars[i]] -
                C_pert_jdem[j, 1].cosmology[response_pars[i]]) / (jdem_eps[j] *
                                                                  2.)
            response_derivs_lihu[i, j - 1] = (
                C_pert_lihu[j, 0].cosmology[response_pars[i]] -
                C_pert_lihu[j, 1].cosmology[response_pars[i]]) / (lihu_eps[j] *
                                                                  2.)
    assert np.allclose(response_derivs_jdem_pred, response_derivs_jdem)
    assert np.allclose(response_derivs_lihu_pred, response_derivs_lihu)

    power_derivs_jdem = np.zeros((3, C_fid_jdem.k.size))
    power_derivs_lihu = np.zeros((3, C_fid_lihu.k.size))

    for pmodel in ['linear', 'fastpt', 'halofit']:
        for j in range(1, 4):
            power_derivs_jdem[
                j - 1] = (C_pert_jdem[j, 0].P_lin.get_matter_power(
                    [0.], pmodel=pmodel)[:, 0] -
                          C_pert_jdem[j, 1].P_lin.get_matter_power(
                              [0.], pmodel=pmodel)[:, 0]) / (jdem_eps[j] * 2.)
            power_derivs_lihu[
                j - 1] = (C_pert_lihu[j, 0].P_lin.get_matter_power(
                    [0.], pmodel=pmodel)[:, 0] -
                          C_pert_lihu[j, 1].P_lin.get_matter_power(
                              [0.], pmodel=pmodel)[:, 0]) / (lihu_eps[j] * 2.)

        assert np.allclose((power_derivs_jdem[1] + power_derivs_jdem[0] -
                            power_derivs_jdem[2]),
                           power_derivs_lihu[1],
                           rtol=1.e-2,
                           atol=1.e-4 * np.max(np.abs(power_derivs_lihu[1])))
        assert np.allclose((power_derivs_jdem[0] - power_derivs_jdem[2]),
                           power_derivs_lihu[0],
                           rtol=1.e-2,
                           atol=1.e-4 * np.max(np.abs(power_derivs_lihu[0])))
        assert np.allclose(power_derivs_jdem[2] * 2 *
                           C_fid_lihu.cosmology['h'],
                           power_derivs_lihu[2],
                           rtol=1.e-2,
                           atol=1.e-4 * np.max(np.abs(power_derivs_lihu[2])))
Esempio n. 19
0
    def get_matter_power(self,
                         zs_in,
                         pmodel='linear',
                         const_pow_mult=1.,
                         get_one_loop=False):
        """get a matter power spectrum P(z)
        Inputs:
        pmodel: nonlinear power spectrum model to use, options are 'linear','halofit', and 'fastpt'
        const_pow_mult: multiplier to adjust sigma8 without creating a whole new power spectrum
        get_one_loop: If True and pmodel=='fastpt', return the one loop contribution in addition to the nonlinear power spectrum
        """
        if isinstance(zs_in, np.ndarray):
            zs = zs_in
        else:
            zs = np.array([zs_in])

        n_z = zs.size

        G_norms = self.C.G_norm(zs)

        if self.use_match_grid:
            w_match_grid = self.w_match_interp(zs)
            pow_mult_grid = self.growth_match_interp(zs) * const_pow_mult

            Pbases = np.zeros((self.k.size, n_z))
            if self.use_camb_grid:
                for i in range(0, n_z):
                    Pbases[:, i] = pow_mult_grid[i] * self.camb_w_interp(
                        self.k, w_match_grid[i]).flatten()
            else:
                Pbases = np.outer(self.P_lin, pow_mult_grid)
        else:
            Pbases = np.outer(self.P_lin, np.full(n_z, 1.)) * const_pow_mult

        P_nonlin = np.zeros((self.k.size, n_z))
        if pmodel == 'linear':
            P_nonlin = Pbases * G_norms**2
        elif pmodel == 'halofit':
            if self.use_match_grid:
                for i in range(0, n_z):
                    cosmo_hf_i = self.cosmology.copy()
                    cosmo_hf_i['de_model'] = 'constant_w'
                    cosmo_hf_i['w'] = w_match_grid[i]
                    G_hf = InterpolatedUnivariateSpline(self.C.z_grid,
                                                        self.wm.growth_interp(
                                                            w_match_grid[i],
                                                            self.C.a_grid),
                                                        ext=2,
                                                        k=3)
                    hf_C_calc = cp.CosmoPie(cosmo_hf_i,
                                            self.C.p_space,
                                            silent=True,
                                            G_safe=True,
                                            G_in=G_hf)
                    hf_C_calc.k = self.k
                    hf_calc = halofit.HalofitPk(hf_C_calc, Pbases[:, i],
                                                self.power_params.halofit,
                                                self.camb_params['leave_h'])
                    P_nonlin[:, i] = 2. * np.pi**2 * (
                        hf_calc.D2_NL(self.k, zs[i]).T / self.k**3)
            else:
                hf_calc = halofit.HalofitPk(self.C,
                                            self.P_lin * const_pow_mult,
                                            self.power_params.halofit,
                                            self.camb_params['leave_h'])
                P_nonlin = 2. * np.pi**2 * (hf_calc.D2_NL(self.k, zs).T /
                                            self.k**3).T

        elif pmodel == 'fastpt':
            if self.use_match_grid:
                one_loops = np.zeros((self.k.size, n_z))
                for i in range(0, n_z):
                    G_i = G_norms[i]
                    one_loops[:, i] = self.fpt.one_loop(
                        Pbases[:, i],
                        C_window=self.power_params.fpt['C_window']) * G_i**4
                    P_nonlin[:, i] = Pbases[:, i] * G_i**2 + one_loops[:, i]
            else:
                one_loops = np.outer(
                    self.fpt.one_loop(
                        self.P_lin,
                        C_window=self.power_params.fpt['C_window']),
                    G_norms**4)
                P_nonlin = np.outer(self.P_lin, G_norms**2) + one_loops

        if pmodel == 'fastpt' and get_one_loop:
            return P_nonlin, one_loops
        elif get_one_loop:
            raise ValueError(
                'could not get one loop power spectrum for pmodel ' +
                str(pmodel))
        else:
            return P_nonlin