Esempio n. 1
0
def get_model(data_dir,
              mat_prop,
              classification=False,
              batch_size=None,
              transfer=None,
              verbose=True):
    # Get the TorchedCrabNet architecture loaded
    model = Model(CrabNet(compute_device=compute_device).to(compute_device),
                  model_name=f'{mat_prop}',
                  verbose=verbose)

    # Train network starting at pretrained weights
    if transfer is not None:
        model.load_network(f'{transfer}.pth')
        model.model_name = f'{mat_prop}'

    # Apply BCEWithLogitsLoss to model output if binary classification is True
    if classification:
        model.classification = True

    # Get the datafiles you will learn from
    train_data = f'{data_dir}/{mat_prop}/train.csv'
    try:
        val_data = f'{data_dir}/{mat_prop}/val.csv'
    except:
        print('Please ensure you have train (train.csv) and validation data',
              f'(val.csv) in folder "data/materials_data/{mat_prop}"')

    # Load the train and validation data before fitting the network
    data_size = pd.read_csv(train_data).shape[0]
    batch_size = 2**round(np.log2(data_size) - 4)
    if batch_size < 2**7:
        batch_size = 2**7
    if batch_size > 2**12:
        batch_size = 2**12
    model.load_data(train_data, batch_size=batch_size, train=True)
    print(f'training with batchsize {model.batch_size} '
          f'(2**{np.log2(model.batch_size):0.3f})')
    model.load_data(val_data, batch_size=batch_size)

    # Set the number of epochs, decide if you want a loss curve to be plotted
    model.fit(epochs=40, losscurve=False)

    # Save the network (saved as f"{model_name}.pth")
    model.save_network()
    return model
Esempio n. 2
0
def get_model(mat_prop,
              i,
              classification=False,
              batch_size=None,
              transfer=None,
              verbose=True):
    # Get the TorchedCrabNet architecture loaded
    model = Model(CrabNet(compute_device=compute_device).to(compute_device),
                  model_name=f'{mat_prop}{i}',
                  verbose=verbose)

    # Train network starting at pretrained weights
    if transfer is not None:
        model.load_network(f'{transfer}.pth')
        model.model_name = f'{mat_prop}'

    # Apply BCEWithLogitsLoss to model output if binary classification is True
    if classification:
        model.classification = True

    # Get the datafiles you will learn from
    train_data = rf'data\matbench_cv\{mat_prop}\train{i}.csv'
    val_data = rf'data\matbench_cv\{mat_prop}\val{i}.csv'

    # Load the train and validation data before fitting the network
    data_size = pd.read_csv(train_data).shape[0]
    batch_size = 2**round(np.log2(data_size) - 4)
    if batch_size < 2**7:
        batch_size = 2**7
    if batch_size > 2**12:
        batch_size = 2**12
    # batch_size = 2**7
    model.load_data(train_data, batch_size=batch_size, train=True)
    print(f'training with batchsize {model.batch_size} '
          f'(2**{np.log2(model.batch_size):0.3f})')
    model.load_data(val_data, batch_size=batch_size)

    # Set the number of epochs, decide if you want a loss curve to be plotted
    model.fit(epochs=300, losscurve=False)

    # Save the network (saved as f"{model_name}.pth")
    model.save_network()
    return model