Esempio n. 1
0
 def pop(message):
     message, n_compressed_bits = len_codec.pop(message)
     cbits_codec = cs.repeat(codec, n_compressed_bits[0])
     message, compressed_bits = cbits_codec.pop(message)
     compressed_bits = np.squeeze(compressed_bits).astype(np.uint8)
     bytes_buffer = b'FLIF' + bytes(compressed_bits)
     process = subprocess.run(decode_command.split(),
                              input=bytes_buffer,
                              capture_output=True)
     if process.returncode != 0:
         raise Exception(f"flif decode failed: {process.stderr}")
     im_buffer = np.frombuffer(process.stdout, dtype=np.uint8)
     image = cv2.imdecode(im_buffer, flags=1)  # this gives in hwc
     return message, inverse_im_transform(image)
Esempio n. 2
0
def test_substack():
    n_data = 100
    prec = 4
    head, tail = cs.base_message((4, 4))
    head = np.split(head, 2)
    message = head, tail
    data = rng.randint(1 << prec, size=(n_data, 2, 4), dtype='uint64')
    view_fun = lambda h: h[0]
    append, pop = cs.substack(cs.repeat(cs.Uniform(prec), n_data), view_fun)
    message_ = append(message, data)
    np.testing.assert_array_equal(message_[0][1], message[0][1])
    message_, data_ = pop(message_)
    np.testing.assert_equal(message, message_)
    np.testing.assert_equal(data, data_)
Esempio n. 3
0
def test_flatten_unflatten(shape, depth=1000):
    np.random.seed(0)
    p = 8
    bits = np.random.randint(1 << p, size=(depth, ) + shape, dtype=np.uint64)

    message = cs.base_message(shape)

    other_bits_push, _ = cs.repeat(cs.Uniform(p), depth)

    message = other_bits_push(message, bits)

    flattened = cs.flatten(message)
    reconstructed = cs.unflatten(flattened, shape)

    assert_message_equal(message, reconstructed)
Esempio n. 4
0
def test_reshape_head(old_shape, new_shape, depth=1000):
    np.random.seed(0)
    p = 8
    bits = np.random.randint(1 << p, size=(depth,) + old_shape, dtype=np.uint64)

    message = cs.empty_message(old_shape)

    other_bits_push, _ = cs.repeat(cs.Uniform(p), depth)

    message = other_bits_push(message, bits)

    resized = cs.reshape_head(message, new_shape)
    reconstructed = cs.reshape_head(resized, old_shape)

    assert_message_equal(message, reconstructed)
Esempio n. 5
0
def rvae_variable_size_codec(codec_from_shape,
                             latent_from_image_shape,
                             image_count,
                             dimensions=4,
                             dimension_bits=16,
                             previous_dims=0):
    size_codec = cs.repeat(cs.Uniform(dimension_bits), dimensions)

    def push(message, symbol):
        """push sizes and array in alternating order"""
        assert len(symbol.shape) == dimensions

        codec = codec_from_shape(symbol.shape)
        head_size = np.prod(latent_from_image_shape(symbol.shape)) + np.prod(
            symbol.shape)
        message = cs.reshape_head(message, (head_size, ))
        message = codec.push(message, symbol)
        message = cs.reshape_head(message, (1, ))
        message = size_codec.push(message, np.array(symbol.shape))
        return message

    def pop(message):
        message, size = size_codec.pop(message)
        # TODO make codec 0 dimensional:
        size = np.array(size)[:, 0]
        assert size.shape == (dimensions, )
        size = size.astype(np.int)
        head_size = np.prod(latent_from_image_shape(size)) + np.prod(size)
        codec = codec_from_shape(tuple(size))

        message = cs.reshape_head(message, (head_size, ))
        message, symbol = codec.pop(message)
        message = cs.reshape_head(message, (1, ))

        return message, symbol

    return rvae_serial_with_progress([cs.Codec(push, pop)] * image_count,
                                     previous_dims)
Esempio n. 6
0
    def push(message, image):
        """expects image to be chw"""
        image = im_transform(image).astype(np.uint8)
        success, im_buffer = cv2.imencode(".ppm", image)
        process = subprocess.run(encode_command.split(),
                                 input=im_buffer.tobytes(),
                                 capture_output=True)
        if process.returncode != 0:
            raise Exception(f"flif encode failed: {process.stderr}")
        compressed_bytes = process.stdout

        # take off the 'FLIF' magic header
        compressed_bytes = compressed_bytes[4:]
        # can also remove RGB interlaced byte and bytes per chan (next two bytes)
        # then there are 3 varints for width, height and number of frames
        # https://flif.info/spec.html for details

        compressed_bits = list(compressed_bytes)  # list of uint8s
        n_compressed_bits = len(compressed_bits)
        cbits_codec = cs.repeat(codec, n_compressed_bits)
        message = cbits_codec.push(message, compressed_bits)
        message = len_codec.push(message, np.uint64(n_compressed_bits))
        return message
Esempio n. 7
0
def test_repeat():
    precision = 4
    n_data = 7
    shape = (2, 3, 5)
    data = rng.randint(1 << precision, size=(n_data, ) + shape, dtype="uint64")
    check_codec(shape, cs.repeat(cs.Uniform(precision), n_data), data)
Esempio n. 8
0
def compress_samples(model, hparams, step=tf.constant(0), decode=False):

    model.set_compression()

    test_set = utils.load_training_files_tfrecords(record_pattern=os.path.join(
        hparams['tfrecords_dir'], hparams['train_files'] + '*'))

    datapoints = list(test_set.unbatch().batch(
        hparams['compress_batch_size']).take(hparams['n_compress_datapoint']))

    num_pixels = hparams['n_compress_datapoint'] * hparams[
        'compress_batch_size'] * hparams['segment_length']

    ## Load Codec
    waveglow_append, waveglow_pop = cs.repeat(
        Waveglow_codec(model=model, hparams=hparams),
        hparams['n_compress_datapoint'])

    ## Encode
    encode_t0 = time.time()
    init_message = cs.empty_message(shape=(hparams['compress_batch_size'],
                                           hparams['segment_length'] // 4))

    # Encode the audio samples
    message = waveglow_append(init_message, datapoints)

    flat_message = cs.flatten(message)
    encode_t = time.time() - encode_t0

    tf.print("All encoded in {:.2f}s.".format(encode_t))

    original_len = 16 * hparams['n_compress_datapoint'] * hparams[
        'segment_length']
    message_len = 32 * len(flat_message)
    tf.print("Used {} bits.".format(message_len))
    tf.print("This is {:.2f} bits per pixel.".format(message_len / num_pixels))
    tf.print("Compression ratio : {:.2f}".format(original_len / message_len))

    tf.summary.scalar(name='bits_per_dim',
                      data=message_len / num_pixels,
                      step=step)
    tf.summary.scalar(name='compression_ratio',
                      data=original_len / message_len,
                      step=step)

    if decode:
        ## Decode
        decode_t0 = time.time()
        message = cs.unflatten(flat_message,
                               shape=(hparams['compress_batch_size'],
                                      hparams['segment_length'] // 4))

        message, datapoints_ = waveglow_pop(message)
        decode_t = time.time() - decode_t0

        print('All decoded in {:.2f}s.'.format(decode_t))

        datacompare = [
            data['wav'].numpy()[..., np.newaxis] for data in datapoints
        ]
        np.testing.assert_equal(datacompare, datapoints_)
        np.testing.assert_equal(message, init_message)

    model.set_training()
Esempio n. 9
0
def run_bbans(hps):
    from autograd.builtins import tuple as ag_tuple
    from rvae.resnet_codec import ResNetVAE

    hps.num_gpus = 1
    hps.batch_size = 1
    batch_size = hps.batch_size
    hps.eval_batch_size = batch_size
    n_flif = hps.n_flif

    _, datasets = images(hps)
    datasets = datasets if isinstance(datasets, list) else [datasets]
    test_images = [
        np.array([image]).astype('uint64') for dataset in datasets
        for image in dataset
    ]
    n_batches = len(test_images) // batch_size
    test_images = [
        np.concatenate(test_images[i * batch_size:(i + 1) * batch_size],
                       axis=0) for i in range(n_batches)
    ]
    flif_images = test_images[:n_flif]
    vae_images = test_images[n_flif:]
    num_dims = np.sum([batch.size for batch in test_images])
    flif_dims = np.sum([batch.size
                        for batch in flif_images]) if flif_images else 0

    prior_precision = 10
    obs_precision = 24
    q_precision = 18

    @lru_cache(maxsize=1)
    def codec_from_shape(shape):
        print("Creating codec for shape " + str(shape))

        hps.image_size = (shape[2], shape[3])

        z_shape = latent_shape(hps)
        z_size = np.prod(z_shape)

        graph = tf.Graph()
        with graph.as_default():
            with tf.variable_scope("model", reuse=tf.AUTO_REUSE):
                x = tf.placeholder(tf.float32, shape, 'x')
                model = CVAE1(hps, "eval", x)
                stepwise_model = LayerwiseCVAE(model)

        saver = tf.train.Saver(model.avg_dict)
        config = tf.ConfigProto(allow_soft_placement=True,
                                intra_op_parallelism_threads=4,
                                inter_op_parallelism_threads=4)
        sess = tf.Session(config=config, graph=graph)
        saver.restore(sess, restore_path())

        run_all_contexts, run_top_prior, runs_down_prior, run_top_posterior, runs_down_posterior, \
        run_reconstruction = stepwise_model.get_model_parts_as_numpy_functions(sess)

        # Setup codecs
        def vae_view(head):
            return ag_tuple(
                (np.reshape(head[:z_size],
                            z_shape), np.reshape(head[z_size:], shape)))

        obs_codec = lambda h, z1: cs.Logistic_UnifBins(*run_reconstruction(
            h, z1),
                                                       obs_precision,
                                                       bin_prec=8,
                                                       bin_lb=-0.5,
                                                       bin_ub=0.5)

        return cs.substack(
            ResNetVAE(run_all_contexts, run_top_posterior, runs_down_posterior,
                      run_top_prior, runs_down_prior, obs_codec,
                      prior_precision, q_precision), vae_view)

    is_fixed = not hps.compression_always_variable and \
               (len(set([dataset[0].shape[-2:] for dataset in datasets])) == 1)
    fixed_size_codec = lambda: cs.repeat(codec_from_shape(vae_images[0].shape),
                                         len(vae_images))
    variable_codec_including_sizes = lambda: rvae_variable_size_codec(
        codec_from_shape,
        latent_from_image_shape=latent_from_image_shape(hps),
        image_count=len(vae_images),
        previous_dims=flif_dims)
    variable_known_sizes_codec = lambda: rvae_variable_known_size_codec(
        codec_from_image_shape=codec_from_shape,
        latent_from_image_shape=latent_from_image_shape(hps),
        shapes=[i.shape for i in vae_images],
        previous_dims=flif_dims)
    variable_size_codec = \
        variable_known_sizes_codec if hps.compression_exclude_sizes else variable_codec_including_sizes
    codec = fixed_size_codec if is_fixed else variable_size_codec
    vae_push, vae_pop = codec()

    np.seterr(divide='raise')

    if n_flif:
        print('Using FLIF to encode initial images...')
        flif_push, flif_pop = cs.repeat(cs.repeat(FLIF, batch_size), n_flif)
        message = cs.empty_message((1, ))
        message = flif_push(message, flif_images)
    else:
        print('Creating a random initial message...')
        message = cs.random_message(hps.initial_bits, (1, ))

    init_head_shape = (np.prod(image_shape(hps)) +
                       np.prod(latent_shape(hps)) if is_fixed else 1, )
    message = cs.reshape_head(message, init_head_shape)

    print("Encoding with VAE...")
    encode_t0 = time.time()
    message = vae_push(message, vae_images)
    encode_t = time.time() - encode_t0
    print("All encoded in {:.2f}s".format(encode_t))

    flat_message = cs.flatten(message)
    message_len = 32 * len(flat_message)
    print("Used {} bits.".format(message_len))
    print("This is {:.2f} bits per dim.".format(message_len / num_dims))
    if n_flif == 0:
        extra_bits = message_len - 32 * hps.initial_bits
        print('Extra bits: {}'.format(extra_bits))
        print('This is {:.2f} bits per dim.'.format(extra_bits / num_dims))

    print('Decoding with VAE...')
    decode_t0 = time.time()
    message = cs.unflatten(flat_message, init_head_shape)
    message, decoded_vae_images = vae_pop(message)
    message = cs.reshape_head(message, (1, ))

    decode_t = time.time() - decode_t0
    print('All decoded in {:.2f}s'.format(decode_t))

    assert len(vae_images) == len(decoded_vae_images), (
        len(vae_images), len(decoded_vae_images))
    for test_image, decoded_image in zip(vae_images, decoded_vae_images):
        np.testing.assert_equal(test_image, decoded_image)

    if n_flif:
        print('Decoding with FLIF...')
        message, decoded_flif_images = flif_pop(message)
        for test_image, decoded_image in zip(flif_images, decoded_flif_images):
            np.testing.assert_equal(test_image, decoded_image)
        assert cs.is_empty(message)
Esempio n. 10
0
## Setup codecs
# VAE codec
model = BinaryVAE(hidden_dim=100, latent_dim=40)
model.load_state_dict(torch.load('vae_params'))

rec_net = torch_fun_to_numpy_fun(model.encode)
gen_net = torch_fun_to_numpy_fun(model.decode)

obs_codec = lambda p: cs.Bernoulli(p, bernoulli_precision)

def vae_view(head):
    return ag_tuple((np.reshape(head[:latent_size], latent_shape),
                     np.reshape(head[latent_size:], obs_shape)))

vae_append, vae_pop = cs.repeat(cs.substack(
    bb_ans.VAE(gen_net, rec_net, obs_codec, prior_precision, q_precision),
    vae_view), num_batches)

## Load mnist images
images = datasets.MNIST(sys.argv[1], train=False, download=True).data.numpy()
images = np.uint64(rng.random_sample(np.shape(images)) < images / 255.)
images = np.split(np.reshape(images, (num_images, -1)), num_batches)

## Encode
# Initialize message with some 'extra' bits
encode_t0 = time.time()
init_message = cs.base_message(obs_size + latent_size)

# Encode the mnist images
message, = vae_append(init_message, images)
Esempio n. 11
0
                                            np.shape(images[0]) + (256,),
                                            obs_elem_idxs,
                                            obs_elem_codec)
        def pop_(msg):
            msg, (data, _) = pop(msg)
            return msg, data
        return append, pop_

    # Setup codecs
    def vae_view(head):
        return ag_tuple((np.reshape(head[:latent_size], latent_shape),
                         np.reshape(head[latent_size:], (batch_size,))))


    vae_append, vae_pop = cs.repeat(cs.substack(
        bb_ans.VAE(gen_net, rec_net, obs_codec, prior_precision, q_precision),
        vae_view), num_batches)

    # Codec for adding extra bits to the start of the chain (necessary for bits
    # back).
    p = prior_precision
    other_bits_depth = 10
    other_bits_append, _ = cs.substack(cs.repeat(codecs.Uniform(p), other_bits_depth),
                                       lambda h: vae_view(h)[0])

    ## Encode
    # Initialize message with some 'extra' bits
    encode_t0 = time.time()
    init_message = vrans.x_init(batch_size + latent_size)

    other_bits = rng.randint(1 << p, size=(other_bits_depth,) + latent_shape, dtype=np.uint64)