def cp_t3(self): # ------------------------------------------------------------------------------ # test 6 triangles (standard pattern) # 7 nodes # 12 creaselines # 3 * 7 - 12 constrains needed # ------------------------------------------------------------------------------ cp = CreasePattern() cp.nodes = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [-1, 1, 0], [-1, 0, 0], [-1, -1, 0], [1, -1, 0]] cp.crease_lines = [ [0, 1], [1, 2], [2, 0], [2, 3], [3, 0], [3, 4], [4, 0], [4, 5], [5, 0], [5, 6], [6, 0], [6, 1], ] cp.constraints = [[0, 1], [0, 2], [1, 0], [1, 1], [1, 2], [4, 1], [2, 0], [6, 0], [4, 2]] # lift node 0 in z-axes cp.constraint_values = [0, 0.5, 0, 0, 0, 0, 0, 0, 0] X = np.zeros((cp.n_dofs,), dtype=float) print "initial lengths\n", cp.c_lengths print "initial vectors\n", cp.c_vectors print "initial R\n", cp.get_R(X) print "initial dR\n", cp.get_dR(X) print "constrained dofs\n", cp.cnstr_dofs print "free dofs\n", cp.free_dofs # Newton-Raphson iteration MAX_ITER = 150 TOLERANCE = 1e-10 n_steps = 8 cv = np.copy(cp.constraint_values) for k in range(n_steps): print "step", k cp.constraint_values = (k + 1.0) / float(n_steps) * cv for i in range(MAX_ITER): dR = cp.get_dR(X)[:, cp.free_dofs] print "dR", dR.shape R = cp.get_R(X) if np.linalg.norm(R) < TOLERANCE: print "==== converged in ", i, "iterations ====" break dX = np.linalg.solve(dR, -R) X[cp.free_dofs] += dX cp.set_next_node(X) print "========== results ==============" print "solution X\n", X print "final positions\n", cp.get_new_nodes(X) print "final vectors\n", cp.get_new_vectors(X) print "final lengths\n", cp.get_new_lengths(X) # initialise View from crease_pattern_view import CreasePatternView my_model = CreasePatternView(data=cp) print my_model.data.iteration_nodes.shape my_model.configure_traits()
# X[1] = 0.01 # X[0] = 0.01 print 'initial lengths\n', cp.c_lengths print 'initial vectors\n', cp.c_vectors print 'initial R\n', cp.get_R(X) print 'initial dR\n', cp.get_dR(X) X = cp.solve_ff(X) print '========== results ==============' print 'solution X\n', X print 'final positions\n', cp.get_new_nodes(X) print 'final vectors\n', cp.get_new_vectors(X) print 'final lengths\n', cp.get_new_lengths(X) return cp if __name__ == '__main__': # cp = moving_truss_cp_circle(n_steps = 10, dx = -1.99) # cp = moving_truss_cp_ff_cnstr(n_steps = 40) cp = triangle_cp_cnstr(n_steps = 40) # initialise View my_model = CreasePatternView(data = cp) my_model.configure_traits()
[1, 3]], F=[[0, 1, 3], [1, 2, 3]]) init = Initialization(cp=cp) init.U_0[5] = 0.05 lift = Lifting(source=init, n_steps=10) print 'initial vector', lift.U_0 # lift.TS = [[r_ , s_, 0.01 + t_ * (0.5)]] lift.CS = [[z_ - 4 * 0.4 * t_ * x_ * (1 - x_ / 3)]] lift.GP = [[4, 0]] lift.LP = [[5, 4], [6, 4]] lift.cf_lst = [(CF(Rf=lift.CS[0][0]), [1])] lift.cnstr_lhs = [[(0, 0, 1.0)], [(0, 1, 1.0)], [(0, 2, 1.0)], [(3, 0, 1.0)], [(3, 2, 1.0)], [(2, 2, 1.0)], [(5, 0, 1.0)], [(6, 0, 1.0)]] lift.cnstr_rhs[0] = 0.9 print lift.U_1 # v = CreasePatternView(reshaping_history=init) v.configure_traits()
def rhombcp(): cp = CreasePattern() cp.nodes = [[ 0, 0, 0 ], [ 2, 0, 0 ], [ 4, 0, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ], [ 3, 1, 0 ], [ 4, 1, 0]] cp.crease_lines = [[ 0, 1 ], [ 1, 2 ], [ 0, 3 ], [ 2, 6 ], [ 0, 4 ], [ 1, 4 ], [ 3, 4 ], [ 5, 4 ], [ 1, 5 ], [ 2, 5 ], [ 6, 5 ], ] cp.constraints = [[3, 2], [3, 1], [4, 1], [4, 2], [5, 1], [5, 2], [6, 0], [6, 1], [6, 2], [0, 2]] # lift node 0 in z-axes cp.constraint_values = np.zeros((10,), dtype = float) cp.constraint_values[3] = 0.4 cp.constraint_values[5] = 0.4 cp.constraint_values[8] = 0.0 cp.constraint_values[9] = 0.0 X = np.zeros((cp.n_dofs,), dtype = float) X[3] = 0.1 X[5] = 0.1 print 'initial lengths\n', cp.c_lengths print 'initial vectors\n', cp.c_vectors print 'initial R\n', cp.get_R(X) print 'initial dR\n', cp.get_dR(X) print 'constrained dofs\n', cp.cnstr_dofs print 'free dofs\n', cp.free_dofs # Newton-Raphson iteration MAX_ITER = 150 TOLERANCE = 1e-10 n_steps = 3 cv = np.copy(cp.constraint_values) for k in range(n_steps): print 'step', k #cp.set_next_node(X) cp.constraint_values = (k + 1.) / float(n_steps) * cv i = 0 while i in range(MAX_ITER): dR = cp.get_dR(X)[:, cp.free_dofs ] print 'dR', dR.shape R = cp.get_R(X) if np.linalg.norm(R) < TOLERANCE: print '==== converged in ', i, 'iterations ====' cp.set_next_node(X) break dX = np.linalg.solve(dR, -R) X[ cp.free_dofs ] += dX i += 1 else: raise ValueError break print '========== results ==============' print 'solution X\n', X print 'final positions\n', cp.get_new_nodes(X) print 'final vectors\n', cp.get_new_vectors(X) print 'final lengths\n', cp.get_new_lengths(X) # initialise View my_model = CreasePatternView(data = cp) my_model.configure_traits()
def show(self): from crease_pattern_view import \ CreasePatternView cpv = CreasePatternView() cpv.data = self cpv.configure_traits()
[3, 0, 0], [3, 1, 0]], L=[[0, 1], [0, 2], [2, 3], [1, 3], [0, 3], [2, 3], [2, 4], [4, 5], [3, 5], [2, 5], [4, 5], [4, 6], [6, 7], [5, 7], [4, 7], ], F=[[0, 1, 2], [1, 2, 3], [2, 3, 4], [3, 4, 5], [4, 5, 6], [5, 6, 7] ] ) init = Initialization(cp=cp) init.t_arr init.u_t[-1] fold = Folding(source=init, n_steps=1, acc=1e-6, MAX_ITER=500, ) fold.u_t[-1] oc = OptCritPotentialEnergy(reshaping=init) u = np.zeros_like(cp.X) print 'f', oc.get_f(u) print 'f_du', oc.get_f_du(u) cpw = CreasePatternView(root=init) cpw.configure_traits()