Esempio n. 1
0
def ball_only_classifier(circles, color_image, bonus_radius):
    model = svmlight.read_model("./output/best_single_cup_model_for_ball")
    ff = find_features()
    # TODO: fix
    label = 0
    best_classification = 0.5
    best_circle = None
    best_circle_pixels = None
    for c in circles[:6]:
        pixels, circle = find_pixels(c, color_image, bonus_radius)
        # create features for that circle
        features = ff.generate_features(pixels, label)
        features = parse_one_line(features)
        print features
        # run the classifier on that circle
        classification = svmlight.classify(model, [features])
        print classification
        if classification[0] > best_classification:
            best_classification = classification
            best_circle = [c]
            best_circle_pixels = pixels
        # make a decision about whether that circle is circly enough
        # cv2.imshow("Image processed", circle)
        # cv2.waitKey()

    # for the strict form of the classifier, I require that all of the detected circles
    # are in fact circles.  other classifiers may be more lenient
    return best_circle, best_classification, best_circle_pixels
Esempio n. 2
0
def simple_classifier(circles, color_image, bonus_radius):
    model = svmlight.read_model("./output/best_single_cup_model")
    ff = find_features()
    # TODO: fix
    label = 0
    new_circles = []
    for c in circles[:6]:
        circle = find_pixels(c, color_image, bonus_radius)
        new_circles.append(circle)
        # create features for that circle
        features = ff.generate_features(circle[0], label)
        features = parse_one_line(features)
        print features
        # run the classifier on that circle
        classification = svmlight.classify(model, [features])
        print classification
        # make a decision about whether that circle is circly enough
        # cv2.imshow("Image processed", circle)
        # cv2.waitKey()

    # for the strict form of the classifier, I require that all of the detected circles
    # are in fact circles.  other classifiers may be more lenient
    return new_circles