def test_scenario2(self):
        """
            Scenario: Successfully comparing centroids with configuration options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster with options "<options>"
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance | full_data_input
        """
        examples = [
            ['data/iris.csv', '20', '20', '30', '{"summary_fields": ["sepal width"]}', '{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}', 'Cluster 2', '1.16436', '{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}'],
            ['data/iris.csv', '20', '20', '30', '{"default_numeric_value": "zero"}', '{"petal length": 1}', 'Cluster 4', '1.41215', '{"petal length": 1, "petal width": 0, "sepal length": 0, "sepal width": 0, "species": ""}']]
        show_doc(self.test_scenario2, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster_with_options(self, example[4])
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[8])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
Esempio n. 2
0
    def test_scenario5(self):
        """
            Scenario: Successfully creating a centroid and the associated dataset:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                When I create a centroid for "<data_input>"
                And I check the centroid is ok
                Then the centroid is "<centroid>"
                And I create a dataset from the cluster and the centroid
                And I wait until the dataset is ready less than <time_2> secs
                And I check that the dataset is created for the cluster and the centroid

                Examples:
                | data                | time_1  | time_2 | time_3 | data_input    | centroid  |
                | ../data/diabetes.csv | 10      | 20     | 20     | {"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"} | Cluster 3 |
        """
        print self.test_scenario5.__doc__
        examples = [
            ['data/diabetes.csv', '10', '20', '20', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}', 'Cluster 3']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_create.i_create_a_centroid(self, example[4])
            prediction_create.the_centroid_is(self, example[5])
    def test_scenario5(self):
        """
            Scenario: Successfully creating a centroid and the associated dataset:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                When I create a centroid for "<data_input>"
                And I check the centroid is ok
                Then the centroid is "<centroid>"
                And I create a dataset from the cluster and the centroid
                And I wait until the dataset is ready less than <time_2> secs
                And I check that the dataset is created for the cluster and the centroid

                Examples:
                | data                | time_1  | time_2 | time_3 | data_input    | centroid  |
                | ../data/diabetes.csv | 10      | 20     | 20     | {"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"} | Cluster 6 |
        """
        print self.test_scenario5.__doc__
        examples = [
            ['data/diabetes.csv', '10', '20', '20', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}', 'Cluster 5']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_create.i_create_a_centroid(self, example[4])
            prediction_create.the_centroid_is(self, example[5])
    def test_scenario2(self):
        """
            Scenario: Successfully comparing centroids with configuration options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster with options "<options>"
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance | full_data_input
        """
        examples = [
            ['data/iris.csv', '30', '30', '30', '{"summary_fields": ["sepal width"]}', '{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}', 'Cluster 2', '1.16436', '{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}'],
            ['data/iris.csv', '20', '20', '30', '{"default_numeric_value": "zero"}', '{"petal length": 1}', 'Cluster 4', '1.41215', '{"petal length": 1, "petal width": 0, "sepal length": 0, "sepal width": 0, "species": ""}']]
        show_doc(self.test_scenario2, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster_with_options(self, example[4])
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[8])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
    def test_scenario5(self):
        """
            Scenario: Successfully comparing centroids with summary fields:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster with options "<options>"
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance |
                | ../data/iris.csv | 20      | 20     | 30     | {"summary_fields": ["sepal width"]} |{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}             | Cluster 6   | 0.7310939266123302   |
        """
        print self.test_scenario5.__doc__
        examples = [
            ['data/iris.csv', '20', '20', '30', '{"summary_fields": ["sepal width"]}', '{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}', 'Cluster 0', '0.7310939266123302']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster_with_options(self, example[4])
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[5])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
    def test_scenario5(self):
        """
            Scenario: Successfully comparing centroids with summary fields:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster with options "<options>"
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance |
                | ../data/iris.csv | 20      | 20     | 30     | {"summary_fields": ["sepal width"]} |{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}             | Cluster 2   | 1.1643644909783857   |
        """
        print self.test_scenario5.__doc__
        examples = [
            ['data/iris.csv', '20', '20', '30', '{"summary_fields": ["sepal width"]}', '{"petal length": 1, "petal width": 1, "sepal length": 1, "species": "Iris-setosa"}', 'Cluster 2', '1.1643644909783857']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster_with_options(self, example[4])
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[5])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
Esempio n. 7
0
    def test_scenario2(self):
        """
            Scenario: Successfully comparing remote and local predictions
                      with raw date input for cluster
                And I wait until the source is ready less than <time_1> secs
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with
                distance "<distance>"

                Examples headers:
                |data|time_1|time_2|time_3|data_input|centroid|distance|

        """
        examples = [
            [
                'data/dates2.csv', '20', '30', '60',
                '{"time-1":"1910-05-08T19:10:23.106","cat-0":"cat2","target-2":0.4}',
                "Cluster 2", 0.92112
            ],
            [
                'data/dates2.csv', '20', '30', '60',
                '{"time-1":"1920-06-30T20:21:20.320","cat-0":"cat1","target-2":0.2}',
                "Cluster 3", 0.77389
            ],
            [
                'data/dates2.csv', '20', '30', '60',
                '{"time-1":"1932-01-30T19:24:11.440","cat-0":"cat2","target-2":0.1}',
                "Cluster 0", 0.87855
            ],
            [
                'data/dates2.csv', '20', '30', '60',
                '{"time-1":"1950-11-06T05:34:05.602","cat-0":"cat1" ,"target-2":0.9}',
                "Cluster 6", 0.83506
            ]
        ]
        show_doc(self.test_scenario2, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(
                self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[4])
            prediction_create.the_centroid_is_with_distance(
                self, example[5], example[6])
            prediction_compare.i_create_a_local_centroid(self, example[4])
            prediction_compare.the_local_centroid_is(self, example[5],
                                                     example[6])
    def test_scenario4(self):
        """
            Scenario: Successfully comparing centroids with or without text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Type": "ham", "Message": "Mobile call"}             | Cluster 7   | 0.341886116992   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false}}}} |{"Type": "ham", "Message": "A normal message"}        | Cluster 0   | 0.5     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Type": "ham", "Message": "Mobile calls"}            | Cluster 0     | 0.5    |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Type": "ham", "Message": "A normal message"}       | Cluster 0     | 0.5     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Type": "ham", "Message": "Mobile call"}               | Cluster 4      | 0.382148869802   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Type": "ham", "Message": "A normal message"}       | Cluster 4     | 0.382148869802   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Type": "ham", "Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}       | Cluster 1      | 0.5     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Type": "ham", "Message": "Ok"}       | Cluster 1    | 0.478833312167     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Type": "", "Message": ""}             | Cluster 0   | 0.707106781187   |
                | ../data/diabetes.csv | 20      | 20     | 30     | {"fields": {}} |{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}       | Cluster 6    | 0.486471379368     |
                | ../data/iris_sp_chars.csv | 20      | 20     | 30     | {"fields": {}} |{"pétal.length":1, "pétal&width\u0000": 2, "sépal.length":1, "sépal&width": 2, "spécies": "Iris-setosa"}       | Cluster 7    | 0.757736964835     |

        """
        print self.test_scenario4.__doc__
        examples = [
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 5', '0.375'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile calls"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 1', '0.375'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 1', '0.375'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Type": "ham", "Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Type": "ham", "Message": "Ok"}', 'Cluster 0', '0.478833312167'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Type": "", "Message": ""}', 'Cluster 0', '0.707106781187'],
            ['data/diabetes.csv', '20', '20', '30', '{"fields": {}}', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}', 'Cluster 5', '0.4006712471727391'],
            ['data/iris_sp_chars.csv', '20', '20', '30', '{"fields": {}}', '{"pétal.length":1, "pétal&width\u0000": 2, "sépal.length":1, "sépal&width": 2, "spécies": "Iris-setosa"}', 'Cluster 0', '0.811744494026442']]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[5])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
    def test_scenario1(self):
        """
            Scenario: Successfully comparing centroids with or without text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples headers:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance |

        """
        examples = [
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 0', '0.25'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile calls"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 1', '0.36637'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Type": "ham", "Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Type": "ham", "Message": "Ok"}', 'Cluster 0', '0.478833312167'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Type": "", "Message": ""}', 'Cluster 6', '0.5'],
            ['data/diabetes.csv', '20', '20', '30', '{"fields": {}}', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}', 'Cluster 3', '0.5033378686559257'],
            ['data/diabetes.csv', '20', '20', '30', '{"fields": {}}', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": true}', 'Cluster 3', '0.5033378686559257'],
            ['data/iris_sp_chars.csv', '20', '20', '30', '{"fields": {}}', '{"pétal.length":1, "pétal&width\u0000": 2, "sépal.length":1, "sépal&width": 2, "spécies": "Iris-setosa"}', 'Cluster 7', '0.8752380218327035'],
            ['data/movies.csv', '20', '20', '30', '{"fields": {"000007": {"optype": "items", "item_analysis": {"separator": "$"}}}}', '{"gender": "Female", "age_range": "18-24", "genres": "Adventure$Action", "timestamp": 993906291, "occupation": "K-12 student", "zipcode": 59583, "rating": 3}', 'Cluster 1', '0.7294650227133437']]
        show_doc(self.test_scenario1, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[5])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
    def test_scenario1(self):
        """
            Scenario: Successfully comparing centroids with or without text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples headers:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance |

        """
        examples = [
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 7', '0.36637'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile calls"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}', '{"Type": "ham", "Message": "A normal message"}', 'Cluster 1', '0.36637'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Type": "ham", "Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}', 'Cluster 0', '0.5'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}', '{"Type": "ham", "Message": "Ok"}', 'Cluster 0', '0.478833312167'],
            ['data/spam.csv', '20', '20', '30', '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}', '{"Type": "", "Message": ""}', 'Cluster 1', '0.5'],
            ['data/diabetes.csv', '20', '20', '30', '{"fields": {}}', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}', 'Cluster 3', '0.5033378686559257'],
            ['data/diabetes.csv', '20', '20', '30', '{"fields": {}}', '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": true}', 'Cluster 3', '0.5033378686559257'],
            ['data/iris_sp_chars.csv', '20', '20', '30', '{"fields": {}}', '{"pétal.length":1, "pétal&width\u0000": 2, "sépal.length":1, "sépal&width": 2, "spécies": "Iris-setosa"}', 'Cluster 7', '0.8752380218327035'],
            ['data/movies.csv', '20', '20', '30', '{"fields": {"000007": {"optype": "items", "item_analysis": {"separator": "$"}}}}', '{"gender": "Female", "age_range": "18-24", "genres": "Adventure$Action", "timestamp": 993906291, "occupation": "K-12 student", "zipcode": 59583, "rating": 3}', 'Cluster 1', '0.7294650227133437']]
        show_doc(self.test_scenario1, examples)
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[5])
            prediction_create.the_centroid_is_with_distance(self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6], example[7])
Esempio n. 11
0
    def test_scenario4(self):
        """
            Scenario: Successfully comparing centroids with or without text options:
                Given I create a data source uploading a "<data>" file
                And I wait until the source is ready less than <time_1> secs
                And I update the source with params "<options>"
                And I create a dataset
                And I wait until the dataset is ready less than <time_2> secs
                And I create a cluster
                And I wait until the cluster is ready less than <time_3> secs
                And I create a local cluster
                When I create a centroid for "<data_input>"
                Then the centroid is "<centroid>" with distance "<distance>"
                And I create a local centroid for "<data_input>"
                Then the local centroid is "<centroid>" with distance "<distance>"

                Examples:
                | data             | time_1  | time_2 | time_3 | options | data_input                            | centroid  | distance |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Type": "ham", "Message": "Mobile call"}             | Cluster 7   | 0.341886116992   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false}}}} |{"Type": "ham", "Message": "A normal message"}        | Cluster 0   | 0.5     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Type": "ham", "Message": "Mobile calls"}            | Cluster 0     | 0.5    |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}} |{"Type": "ham", "Message": "A normal message"}       | Cluster 0     | 0.5     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Type": "ham", "Message": "Mobile call"}               | Cluster 4      | 0.382148869802   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}} |{"Type": "ham", "Message": "A normal message"}       | Cluster 4     | 0.382148869802   |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Type": "ham", "Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}       | Cluster 1      | 0.5     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}} |{"Type": "ham", "Message": "Ok"}       | Cluster 1    | 0.478833312167     |
                | ../data/spam.csv | 20      | 20     | 30     | {"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}} |{"Type": "", "Message": ""}             | Cluster 0   | 0.707106781187   |
                | ../data/diabetes.csv | 20      | 20     | 30     | {"fields": {}} |{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}       | Cluster 6    | 0.486471379368     |
                | ../data/iris_sp_chars.csv | 20      | 20     | 30     | {"fields": {}} |{"pétal.length":1, "pétal&width\u0000": 2, "sépal.length":1, "sépal&width": 2, "spécies": "Iris-setosa"}       | Cluster 7    | 0.757736964835     |

        """
        print self.test_scenario4.__doc__
        examples = [
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}',
                '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 7',
                '0.341886116992'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false}}}}',
                '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0',
                '0.5'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}',
                '{"Type": "ham", "Message": "Mobile calls"}', 'Cluster 0',
                '0.5'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": false, "use_stopwords": false, "language": "en"}}}}',
                '{"Type": "ham", "Message": "A normal message"}', 'Cluster 0',
                '0.5'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}',
                '{"Type": "ham", "Message": "Mobile call"}', 'Cluster 4',
                '0.382148869802'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": false, "stem_words": true, "use_stopwords": true, "language": "en"}}}}',
                '{"Type": "ham", "Message": "A normal message"}', 'Cluster 4',
                '0.382148869802'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}',
                '{"Type": "ham", "Message": "FREE for 1st week! No1 Nokia tone 4 ur mob every week just txt NOKIA to 87077 Get txting and tell ur mates. zed POBox 36504 W45WQ norm150p/tone 16+"}',
                'Cluster 1', '0.5'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"token_mode": "full_terms_only", "language": "en"}}}}',
                '{"Type": "ham", "Message": "Ok"}', 'Cluster 1',
                '0.478833312167'
            ],
            [
                'data/spam.csv', '20', '20', '30',
                '{"fields": {"000001": {"optype": "text", "term_analysis": {"case_sensitive": true, "stem_words": true, "use_stopwords": false, "language": "en"}}}}',
                '{"Type": "", "Message": ""}', 'Cluster 0', '0.707106781187'
            ],
            [
                'data/diabetes.csv', '20', '20', '30', '{"fields": {}}',
                '{"pregnancies": 0, "plasma glucose": 118, "blood pressure": 84, "triceps skin thickness": 47, "insulin": 230, "bmi": 45.8, "diabetes pedigree": 0.551, "age": 31, "diabetes": "true"}',
                'Cluster 6', '0.486471379368'
            ],
            [
                'data/iris_sp_chars.csv', '20', '20', '30', '{"fields": {}}',
                '{"pétal.length":1, "pétal&width\u0000": 2, "sépal.length":1, "sépal&width": 2, "spécies": "Iris-setosa"}',
                'Cluster 7', '0.757736964835'
            ]
        ]
        for example in examples:
            print "\nTesting with:\n", example
            source_create.i_upload_a_file(self, example[0])
            source_create.the_source_is_finished(self, example[1])
            source_create.i_update_source_with(self, example[4])
            dataset_create.i_create_a_dataset(self)
            dataset_create.the_dataset_is_finished_in_less_than(
                self, example[2])
            cluster_create.i_create_a_cluster(self)
            cluster_create.the_cluster_is_finished_in_less_than(
                self, example[3])
            prediction_compare.i_create_a_local_cluster(self)
            prediction_create.i_create_a_centroid(self, example[5])
            prediction_create.the_centroid_is_with_distance(
                self, example[6], example[7])
            prediction_compare.i_create_a_local_centroid(self, example[5])
            prediction_compare.the_local_centroid_is(self, example[6],
                                                     example[7])