Esempio n. 1
0
def index_hist_total(coll_to_use="coll_data_feed",
                     crypto_asset=CRYPTO_ASSET,
                     exc_list=EXCHANGES,
                     pair_list=PAIR_ARRAY):

    # drop the pre-existing collections
    mongo_coll_drop("index_hist")

    # define the mongo indexing
    mongo_indexing()

    data_df = query_mongo(DB_NAME, MONGO_DICT.get(coll_to_use))

    (crypto_asset_price_arr, crypto_asset_vol_arr, exc_vol_tot,
     logic_matrix_one) = index_hist_loop(data_df, crypto_asset, exc_list,
                                         pair_list)
    print(crypto_asset_vol_arr)
    (crypto_asset_price, crypto_asset_vol, price_ret, weights_for_board,
     first_logic_matrix_df, second_logic_matrix_df, ewma_df,
     double_checked_EWMA, syntethic, syntethic_relative_matrix, divisor_array,
     reshaped_divisor, index_values,
     index_1000_base) = index_hist_op(crypto_asset_price_arr,
                                      crypto_asset_vol_arr, logic_matrix_one)

    index_hist_uploader(crypto_asset_price, crypto_asset_vol, exc_vol_tot,
                        price_ret, weights_for_board, first_logic_matrix_df,
                        second_logic_matrix_df, ewma_df, double_checked_EWMA,
                        syntethic, syntethic_relative_matrix, divisor_array,
                        reshaped_divisor, index_values, index_1000_base)
Esempio n. 2
0
def ecb_daily_download(day_to_download_TS):

    # creating the empty collection cleandata within the database index
    mongo_indexing()

    day_date = datetime.fromtimestamp(int(day_to_download_TS))
    day_date_str = day_date.strftime("%Y-%m-%d")

    # retrieving data from ECB website
    rate_of_day = ECB_rates_extractor(ECB_FIAT, day_date_str)

    return rate_of_day
Esempio n. 3
0
def exc_hist_op():

    mongo_coll_drop("exc")

    mongo_indexing()

    # defining the crytpo_fiat array
    crypto_fiat_arr = all_crypto_fiat_gen()
    # querying all raw data from EXC_rawdata
    exc_raw_df = query_mongo(DB_NAME, MONGO_DICT.get("coll_exc_raw"))

    midnight_clean = exc_initial_clean(exc_raw_df, crypto_fiat_arr)
    mongo_upload(midnight_clean, "collection_exc_uniform")

    # deleting the values for xrp in the coinbase-pro exchange
    midnight_clean["key"] = midnight_clean["Exchange"] + \
        "&" + midnight_clean["Pair"]
    midnight_clean = midnight_clean.loc[midnight_clean.key
                                        != "coinbase-pro&xrpusd"]
    midnight_clean = midnight_clean.loc[midnight_clean.key
                                        != "coinbase-pro&xrpeur"]
    # deleting the values for zec and xmr in the bittrex exchange
    midnight_clean = midnight_clean.loc[midnight_clean.key
                                        != "bittrex&zecusd"]
    midnight_clean = midnight_clean.loc[midnight_clean.key
                                        != "bittrex&zecusdt"]
    midnight_clean = midnight_clean.loc[midnight_clean.key
                                        != "bittrex&zecusdc"]
    midnight_clean = midnight_clean.loc[midnight_clean.key
                                        != "bittrex&xmrusdt"]

    midnight_clean = midnight_clean.drop(columns="key")

    exc_complete_df = exc_key_mngmt(midnight_clean)
    exc_fixed_df = exc_hist_fix(exc_complete_df)
    mongo_upload(exc_fixed_df, "collection_exc_clean")

    exc_converted = exc_hist_conv(exc_fixed_df)
    exc_converted.fillna(0, inplace=True)
    mongo_upload(exc_converted, "collection_exc_final_data")

    return None
Esempio n. 4
0
def cw_hist_operation(start_date=START_DATE):

    date_tot = date_gen(start_date)
    last_day_TS = date_tot[len(date_tot) - 1]

    mongo_indexing()

    # deleting previous MongoDB collections
    mongo_coll_drop("cw_hist_clean")
    mongo_coll_drop("cw_hist_conv")

    # fix and upload the series for the "pair volume" info
    tot_raw_data = query_mongo(DB_NAME, MONGO_DICT.get("coll_cw_raw"))
    cw_vol_fix_data = cw_hist_pair_vol_fix(tot_raw_data)
    mongo_upload(cw_vol_fix_data, "collection_cw_vol_check")

    # clean and upload all the series
    cleaned_df = cw_hist_cleaning(cw_vol_fix_data, start_date)
    mongo_upload(cleaned_df, "collection_cw_clean")

    # compute and upload USDC and USDT rates series
    usdt_rates, usdc_rates = stable_rates_op("coll_cw_clean", None)
    mongo_upload(usdt_rates, "collection_stable_rate")
    mongo_upload(usdc_rates, "collection_stable_rate")

    # convert and upload all the data into USD
    converted_df = cw_hist_conv_op(cleaned_df)
    mongo_upload(converted_df, "collection_cw_converted")

    # logic matrix of crypto-fiat keys
    key_df = key_log_mat(DB_NAME, "coll_cw_conv", last_day_TS, EXCHANGES,
                         CRYPTO_ASSET, PAIR_ARRAY)
    mongo_upload(key_df, "collection_CW_key")
    mongo_upload(key_df, "collection_EXC_key")

    # fill zero-volume data and upload on MongoDB
    final_df = cw_hist_zero_vol_fill_op(converted_df)
    mongo_upload(final_df, "collection_cw_final_data")

    return None
Esempio n. 5
0
# set today
today_str = datetime.now().strftime("%Y-%m-%d")
today = datetime.strptime(today_str, "%Y-%m-%d")
today_TS = int(today.replace(tzinfo=timezone.utc).timestamp())
y_TS = today_TS - DAY_IN_SEC
two_before_TS = y_TS - DAY_IN_SEC

# defining the array containing all the date from start_period until today
date_complete_int = date_gen(START_DATE)
# converting the timestamp format date into string
date_tot = [str(single_date) for single_date in date_complete_int]

# #################### setup mongo connection ##################

# creating the empty collections cleandata within the database index
mongo_indexing()

collection_dict_upload = mongo_coll()

# ################# DAILY DATA CONVERSION MAIN PART ##################

# querying the data from mongo
query_data = {"Time": str(y_TS)}
query_rate = {"Date": str(y_TS)}
query_stable = {"Time": str(y_TS)}
matrix_rate = query_mongo(DB_NAME, MONGO_DICT.get("coll_ecb_clean"),
                          query_rate)
matrix_rate = matrix_rate.rename({"Date": "Time"}, axis="columns")
matrix_data = query_mongo(DB_NAME, MONGO_DICT.get("coll_exc_clean"),
                          query_data)
print(matrix_data)
Esempio n. 6
0
def test_mongo_indexing():

    mongo_indexing()
Esempio n. 7
0
def cw_daily_operation(day=None):
    '''
    @param day has to be either None or "%Y-%m-%d" string format

    '''

    # create the indexing for MongoDB and define the variable containing the
    # MongoDB collections where to upload data
    mongo_indexing()

    date_tot = date_gen(START_DATE)
    # converting the timestamp format date into string
    date_tot_str = [str(single_date) for single_date in date_tot]

    day_before_TS, _ = days_variable(day)

    if day is None:

        if daily_check_mongo("coll_cw_raw", {
                "Exchange": "coinbase-pro",
                "Pair": "btcusd"
        }) is False:

            try:
                cw_rawdata_daily = cw_daily_download(day_before_TS +
                                                     DAY_IN_SEC)
            except Exception:
                error("Exception occurred", exc_info=True)
                info('Daily download from CryptoWatch failed')
            mongo_upload(cw_rawdata_daily, "collection_cw_raw")

        else:

            print("The CW_rawdata collection on MongoDB is updated.")

        if daily_check_mongo("coll_vol_chk", {
                "Exchange": "coinbase-pro",
                "Pair": "btcusd"
        }) is False:

            mat_vol_fix = daily_pair_vol_fix(day_before_TS)

            try:

                mongo_upload(mat_vol_fix, "collection_cw_vol_check")

            except AttributeError:
                pass

        else:

            mat_vol_fix = []
            print(
                "Message: No need to fix pair volume. The collection on MongoDB is updated."
            )

        # new and dead crypto-fiat key management

        daily_complete_df = cw_daily_key_mngm(mat_vol_fix, day_before_TS,
                                              date_tot_str)

        # missing data fixing

        if daily_check_mongo("coll_cw_clean", {
                "Exchange": "coinbase-pro",
                "Pair": "btcusd"
        }) is False:

            daily_fixed_df = daily_fix_miss_op(daily_complete_df, day,
                                               "coll_cw_clean")
            mongo_upload(daily_fixed_df, "collection_cw_clean")

        else:

            print("Message: The collection cw_clean on MongoDB is updated.")

        if daily_check_mongo("coll_stable_rate",
                             {"Currency": "USDT/USD"}) is False:

            usdt_rates, usdc_rates = stable_rates_op("coll_cw_clean",
                                                     str(day_before_TS))

            mongo_upload(usdt_rates, "collection_stable_rate")
            mongo_upload(usdc_rates, "collection_stable_rate")

        else:

            print("The stable_rates_collection on MongoDB is already updated.")

        if daily_check_mongo("coll_cw_conv", {
                "Exchange": "coinbase-pro",
                "Pair": "btcusd"
        }) is False:

            converted_data = cw_daily_conv_op(day_before_TS)
            mongo_upload(converted_data, "collection_cw_converted")

        else:

            print(
                "Message: The cw_converted_data collection on MongoDB is already updated."
            )

        if daily_check_mongo("coll_cw_final", {
                "Exchange": "coinbase-pro",
                "Pair": "btcusd"
        }) is False:

            mongo_upload(converted_data, "collection_cw_final_data")

        else:

            print(
                "The CW_final_data collection on MongoDB is already updated.")

    else:

        cw_rawdata_daily = cw_daily_download(day_before_TS)
        mongo_upload(cw_rawdata_daily, "collection_cw_raw")
        mat_vol_fix = daily_pair_vol_fix(day_before_TS)
        try:

            mongo_upload(mat_vol_fix, "collection_cw_vol_check")

        except AttributeError:
            pass

        daily_complete_df = cw_daily_key_mngm(mat_vol_fix, day_before_TS,
                                              date_tot_str)
        daily_fixed_df = daily_fix_miss_op(daily_complete_df, day,
                                           "coll_cw_clean")
        mongo_upload(daily_fixed_df, "collection_cw_clean")
        usdt_rates, usdc_rates = stable_rates_op("coll_cw_clean",
                                                 str(day_before_TS))
        mongo_upload(usdt_rates, "collection_stable_rate")
        mongo_upload(usdc_rates, "collection_stable_rate")
        converted_data = cw_daily_conv_op(day_before_TS)
        mongo_upload(converted_data, "collection_cw_converted")
        mongo_upload(converted_data, "collection_cw_final_data")

    return None
Esempio n. 8
0
def index_normal_day(crypto_asset, exc_list, pair_list, coll_to_use, day=None):

    # create the indexing for MongoDB
    mongo_indexing()

    day_before_TS, two_before_TS = days_variable(day)
    two_before_human = timestamp_to_human([two_before_TS])

    # defining the dictionary for the MongoDB query
    query_dict = {"Time": int(day_before_TS)}
    # retriving the needed information on MongoDB
    daily_mat = query_mongo(DB_NAME, MONGO_DICT.get(coll_to_use), query_dict)

    (crypto_asset_price, crypto_asset_vol, exc_vol_tot,
     _) = index_daily_loop(daily_mat, crypto_asset, exc_list, pair_list,
                           day_before_TS)

    # turn prices and volumes into pandas dataframe
    crypto_asset_price = pd.DataFrame(crypto_asset_price, columns=CRYPTO_ASSET)
    crypto_asset_vol = pd.DataFrame(crypto_asset_vol, columns=CRYPTO_ASSET)

    # compute the price return of the day
    two_before_price = query_mongo(DB_NAME, MONGO_DICT.get("coll_price"),
                                   {"Time": two_before_TS})
    two_before_price = two_before_price.drop(columns=["Time", "Date"])
    return_df = two_before_price.append(crypto_asset_price)
    price_ret = return_df.pct_change()
    price_ret = price_ret.iloc[[1]]
    price_ret = price_ret.replace(-1, 0)
    price_ret.fillna(0, inplace=True)
    # then add the 'Time' column
    time_header = ["Time"]
    time_header.extend(CRYPTO_ASSET)
    crypto_asset_price = pd.DataFrame(crypto_asset_price, columns=time_header)
    crypto_asset_price["Time"] = int(day_before_TS)
    crypto_asset_vol = pd.DataFrame(crypto_asset_vol, columns=time_header)
    crypto_asset_vol["Time"] = int(day_before_TS)
    # adding the Time column to the price ret df
    price_ret["Time"] = int(day_before_TS)

    # computing the Exponential Weighted Moving Average of the day
    hist_volume = query_mongo(DB_NAME, MONGO_DICT.get("coll_volume"))
    hist_volume = hist_volume.drop(columns=["Date"])
    hist_volume = hist_volume.append(crypto_asset_vol)
    daily_ewma = daily_ewma_crypto_volume(hist_volume, CRYPTO_ASSET)

    # downloading from mongoDB the current logic matrices (1 e 2)
    logic_one = query_mongo(DB_NAME, MONGO_DICT.get("coll_log1"))
    # taking only the logic value referred to the current period
    current_logic_one = logic_one.iloc[[len(logic_one["Date"]) - 2]]
    current_logic_one = current_logic_one.drop(columns=["Date", "Time"])
    logic_two = query_mongo(DB_NAME, MONGO_DICT.get("coll_log2"))
    # taking only the logic value referred to the current period
    current_logic_two = logic_two.iloc[[len(logic_two["Date"]) - 2]]
    current_logic_two = current_logic_two.drop(columns=["Date", "Time"])

    # computing the ewma checked with both the first and second logic matrices
    daily_ewma_first_check = np.array(daily_ewma) * np.array(current_logic_one)
    daily_ewma_double_check = daily_ewma_first_check * \
        np.array(current_logic_two)
    daily_ewma_double_check = pd.DataFrame(daily_ewma_double_check,
                                           columns=CRYPTO_ASSET)

    # compute the daily syntethic matrix
    yesterday_synt_matrix = query_mongo(DB_NAME, MONGO_DICT.get("coll_synt"),
                                        {"Date": two_before_human[0]})
    yesterday_synt_matrix = yesterday_synt_matrix.drop(
        columns=["Date", "Time"])
    daily_return = np.array(price_ret.loc[:, CRYPTO_ASSET])
    new_synt = (1 + daily_return) * np.array(yesterday_synt_matrix)
    daily_synth = pd.DataFrame(new_synt, columns=CRYPTO_ASSET)

    # compute the daily relative syntethic matrix
    daily_tot = np.array(daily_synth.sum(axis=1))

    daily_rel = np.array(daily_synth) / daily_tot
    daily_rel = pd.DataFrame(daily_rel, columns=CRYPTO_ASSET)

    # daily index value computation
    curr_divisor = query_mongo(DB_NAME, MONGO_DICT.get("coll_divisor_res"),
                               {"Date": two_before_human[0]})
    curr_div_val = np.array(curr_divisor["Divisor Value"])
    index_numerator = np.array(
        crypto_asset_price[CRYPTO_ASSET]) * np.array(daily_rel)
    numerator_sum = index_numerator.sum(axis=1)
    num = pd.DataFrame(numerator_sum)
    daily_index_value = np.array(num) / curr_div_val
    raw_index_df = pd.DataFrame(daily_index_value, columns=["Index Value"])

    # retrieving from mongoDB the yesterday value of the raw index
    yesterday_raw_index = query_mongo(DB_NAME,
                                      MONGO_DICT.get("coll_raw_index"),
                                      {"Date": two_before_human[0]})
    yesterday_raw_index = yesterday_raw_index.drop(columns=["Date", "Time"])
    raw_curr = yesterday_raw_index.append(raw_index_df)
    variation = raw_curr.pct_change()
    variation = np.array(variation.iloc[1])

    # retrieving from mongoDB the yesterday value of the raw index
    yesterday_1000_index = query_mongo(DB_NAME,
                                       MONGO_DICT.get("coll_1000_index"),
                                       {"Date": two_before_human[0]})
    daily_index_1000 = np.array(
        yesterday_1000_index["Index Value"]) * (1 + variation)
    daily_index_1000_df = pd.DataFrame(daily_index_1000,
                                       columns=["Index Value"])

    index_daily_uploader(crypto_asset_price,
                         crypto_asset_vol,
                         exc_vol_tot,
                         price_ret,
                         daily_ewma,
                         daily_ewma_double_check,
                         daily_synth,
                         daily_rel,
                         curr_divisor,
                         daily_index_1000_df,
                         raw_index_df,
                         day=day)

    return None
Esempio n. 9
0
def index_board_day(crypto_asset, exc_list, pair_list, coll_to_use, day=None):

    mongo_indexing()

    day_before_TS, _ = days_variable(day)

    # define all the useful arrays containing the rebalance start
    # date, stop date, board meeting date
    rebalance_start_date = start_q(START_DATE)
    rebalance_stop_date = stop_q(rebalance_start_date)
    board_date_eve = day_before_board()
    next_rebalance_date = next_start()

    # call the function that creates a object containing
    # the couple of quarterly start-stop date
    next_reb_start = str(int(next_rebalance_date[len(rebalance_start_date)]))
    curr_reb_start = str(
        int(rebalance_start_date[len(rebalance_start_date) - 1]))
    last_reb_start = str(
        int(rebalance_start_date[len(rebalance_start_date) - 2]))
    next_reb_stop = str(int(rebalance_stop_date[len(rebalance_stop_date) - 2]))
    curr_board_eve = str(int(board_date_eve[len(board_date_eve) - 1]))

    # defining the dictionary for the MongoDB query
    query_dict = {"Time": int(day_before_TS)}
    # retriving the needed information on MongoDB
    daily_mat = query_mongo(DB_NAME, MONGO_DICT.get(coll_to_use), query_dict)

    crypto_asset_price, crypto_asset_vol, exc_vol_tot, logic_one_arr = index_daily_loop(
        daily_mat,
        crypto_asset,
        exc_list,
        pair_list,
        day_before_TS,
        last_reb_start,
        next_reb_stop,
        curr_board_eve,
        day_type="board")

    (crypto_asset_price, crypto_asset_vol, price_ret, daily_ewma,
     daily_ewma_double_check, daily_synth, daily_rel, curr_divisor,
     first_logic_row, second_logic_row, weights_for_board, daily_index_1000_df,
     raw_index_df, _) = index_daily_operation(crypto_asset,
                                              crypto_asset_price,
                                              crypto_asset_vol,
                                              day_before_TS,
                                              curr_reb_start,
                                              next_reb_start,
                                              curr_board_eve,
                                              logic_one_arr=logic_one_arr,
                                              day_type="board",
                                              day=day)

    print(daily_ewma_double_check)
    index_daily_uploader(crypto_asset_price,
                         crypto_asset_vol,
                         exc_vol_tot,
                         price_ret,
                         daily_ewma,
                         daily_ewma_double_check,
                         daily_synth,
                         daily_rel,
                         curr_divisor,
                         daily_index_1000_df,
                         raw_index_df,
                         new_logic_one=first_logic_row,
                         new_logic_two=second_logic_row,
                         new_weights=weights_for_board,
                         day=day)

    return None