def conv_backward_naive(dout, cache):
  """
  A naive implementation of the backward pass for a convolutional layer.

  Inputs:
  - dout: Upstream derivatives.
  - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive

  Returns a tuple of:
  - dx: Gradient with respect to x
  - dw: Gradient with respect to w
  - db: Gradient with respect to b
  """
  dx, dw, db = None, None, None
  #############################################################################
  # TODO: Implement the convolutional backward pass.                          #
  #############################################################################
  x = cache[0]
  w = cache[1]
  b = cache[2]
  conv_param = cache[3]
  pad = conv_param['pad']
  stride = conv_param['stride']
  (N, C, H, W) = x.shape
  (F, C, HH, WW) = w.shape
  
  # Calculate x_col using the im2col helper function
  x_col = im2col.im2col_indices(x, field_height=HH, field_width=WW, padding=pad, stride=stride)
  
  # Calculate w_row using the im2col helper function
  w_row = im2col.im2col_indices(w, field_height=HH, field_width=WW, padding=0, stride=1)

  # Reshape the output gradient into col form
  dout_col = im2col.im2col_indices(dout, field_height=1, field_width=1, padding=0, stride=1)
  
  # Calculate and reshape the dx gradient
  dx_col = w_row.dot(dout_col)
  dx = im2col.col2im_indices(dx_col, x.shape, field_height=HH, field_width=WW, padding=pad, stride=stride)

  # Calculate and reshape the dw gradient
  dw_row = x_col.dot(dout_col.T)
  dw = im2col.col2im_indices(dw_row, w.shape, field_height=HH, field_width=WW, padding=0, stride=1)

  # Calculate and reshape the db gradient
  db = np.sum(dout_col, axis=1)
  
  pass
  #############################################################################
  #                             END OF YOUR CODE                              #
  #############################################################################
  return dx, dw, db
Esempio n. 2
0
def max_pool_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a max-pooling layer.

    Inputs:
    - dout: Upstream derivatives
    - cache: A tuple of (x, pool_param) as in the forward pass.

    Returns:
    - dx: Gradient with respect to x
    """
    dx = None
    ###########################################################################
    # TODO: Implement the max-pooling backward pass                           #
    ###########################################################################
    x, pool_param, mask = cache
    N, C, H, W = x.shape
    dx = np.zeros(x.shape)
    for i in range(N):
        for j in range(C):
            m_temp = im2col_indices(np.reshape(mask[i][j], (1, 1, H, W)),
                                    pool_param['pool_height'],
                                    pool_param['pool_width'], 0,
                                    pool_param['stride'])
            dout_temp = np.reshape(dout[i][j], (-1))
            dx[i, j, :, :] = col2im_indices(m_temp * dout_temp, (1, 1, H, W),
                                            pool_param['pool_height'],
                                            pool_param['pool_width'], 0,
                                            pool_param['stride'])

    pass
    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx
Esempio n. 3
0
def max_pool_backward_naive(dout, cache):
    """
  A naive implementation of the backward pass for a max pooling layer.

  Inputs:
  - dout: Upstream derivatives
  - cache: A tuple of (x, pool_param) as in the forward pass.

  Returns:
  - dx: Gradient with respect to x
  """
    #############################################################################
    # TODO: Implement the max pooling backward pass                             #
    #############################################################################
    x, pool_param, x_col, switches = cache

    HH, WW = pool_param['pool_height'], pool_param['pool_width']
    stride = pool_param['stride']

    N, C, H, W = x.shape

    dx_col = np.zeros_like(x_col)
    dout_flat = dout.transpose(2, 3, 0, 1).ravel()

    dx_col[switches, np.arange(switches.size)] = dout_flat
    dx = col2im_indices(dx_col, (N * C, 1, H, W),
                        HH,
                        WW,
                        padding=0,
                        stride=stride).reshape(x.shape)
    #############################################################################
    #                             END OF YOUR CODE                              #
    #############################################################################
    return dx
def max_pool_forward_naive(x, pool_param):
  """
  A naive implementation of the forward pass for a max pooling layer.

  Inputs:
  - x: Input data, of shape (N, C, H, W)
  - pool_param: dictionary with the following keys:
    - 'pool_height': The height of each pooling region
    - 'pool_width': The width of each pooling region
    - 'stride': The distance between adjacent pooling regions

  Returns a tuple of:
  - out: Output data
  - cache: (x, pool_param)
  """
  out = None
  #############################################################################
  # TODO: Implement the max pooling forward pass                              #
  #############################################################################
  # Unpack params
  (N, C, H, W) = x.shape
  HH = pool_param['pool_height']
  WW = pool_param['pool_width']
  stride = pool_param['stride']

  # Calculate H' and W'
  H_ = 1 + (H - HH) / stride
  W_ = 1 + (W - WW) / stride

  # Calculate x_col using the im2col helper function
  x_col = im2col.im2col_indices(x, HH, WW, padding=0, stride=stride)

  # Reshape into pools over all channels
  x_col_pools = x_col.T.reshape(-1, HH*WW).T

  # Perform the max-pooling
  switches = np.argmax(x_col_pools, axis=0)
  out_maxpool = x_col_pools[switches, np.arange(x_col_pools.shape[-1])]

  # Reshape into columns
  out_maxpool_col = out_maxpool.reshape(-1, C).T

  # Reshape the output using the col2im helper function
  out = im2col.col2im_indices(out_maxpool_col, (N,C,H_,W_), field_height=1, field_width=1, padding=0, stride=1)

  pass
  #############################################################################
  #                             END OF YOUR CODE                              #
  #############################################################################
  cache = (x, switches, pool_param)
  return out, cache
Esempio n. 5
0
def max_pool_backward_naive(dout, cache):
    """
  A naive implementation of the backward pass for a max pooling layer.

  Inputs:
  - dout: Upstream derivatives
  - cache: A tuple of (x, pool_param) as in the forward pass.

  Returns:
  - dx: Gradient with respect to x
  """
    dx = None
    #############################################################################
    # TODO: Implement the max pooling backward pass                             #
    #############################################################################
    x, pool_param = cache

    pool_height = pool_param['pool_height']
    pool_width = pool_param['pool_width']
    stride = pool_param['stride']
    N, C, H, W = x.shape

    HH = (H - pool_height) // stride + 1
    WW = (W - pool_width) // stride + 1

    #k, i, j = get_im2col_indices(x.shape, pool_height, pool_width, 0, stride)

    #pool_col = x[:, k, i, j]
    pool_col = im2col_indices(x, pool_height, pool_width, 0, stride)

    pool_col = pool_col.reshape(C, pool_height * pool_width, -1).transpose(
        1, 0, 2).reshape(pool_height * pool_width, -1)

    pool_max_index = np.argmax(pool_col, axis=0)
    #print('pool_max_index', len(pool_max_index))
    dx_col = np.zeros(pool_col.shape)

    #print('dx_col.shape', dx_col.shape)
    #print('dout.shape--before', dout.shape)
    dout = dout.transpose(1, 2, 3, 0).reshape(dout.size)

    #print('dout.shape', dout.shape)
    dx_col[pool_max_index, range(len(pool_max_index))] = dout
    dx_col = dx_col.reshape(pool_height * pool_width, C, -1).transpose(
        1, 0, 2).reshape(C * pool_height * pool_width, -1)
    dx = col2im_indices(dx_col, x.shape, pool_height, pool_width, 0, stride)
    #print(dx)
    #############################################################################
    #                             END OF YOUR CODE                              #
    #############################################################################
    return dx
def max_pool_backward_naive(dout, cache):
  """
  A naive implementation of the backward pass for a max pooling layer.

  Inputs:
  - dout: Upstream derivatives
  - cache: A tuple of (x, pool_param) as in the forward pass.

  Returns:
  - dx: Gradient with respect to x
  """
  dx = None
  #############################################################################
  # TODO: Implement the max pooling backward pass                             #
  #############################################################################
  x = cache[0]
  switches = cache[1]
  pool_param = cache[2]
  (N, C, H, W) = x.shape
  HH = pool_param['pool_height']
  WW = pool_param['pool_width']
  stride = pool_param['stride']
  
  # Calculate x_col using the im2col helper function
  x_col = im2col.im2col_indices(x, field_height=HH, field_width=WW, padding=0, stride=stride)
  
  # Reshape into pools over all channels
  # x_col_pools = x_col.T.reshape(-1, HH*WW).T
  x_col_pools = x_col.reshape(-1,HH*WW).T

  # Reshape the output gradient into col form
  dout_col = im2col.im2col_indices(dout, field_height=1, field_width=1, padding=0, stride=1)

  # Since we're taking the gradient of a max function,
  # we route the output gradient to the inputs that had
  # the max values on the forward pass using the cached switches.
  dx_col_pools = np.zeros(x_col_pools.shape)
  dx_col_pools[switches, np.arange(dx_col_pools.shape[-1])] = dout_col.T.flatten()

  # Reshape into col form
  dx_col = dx_col_pools.T.reshape(x_col.T.shape).T

  # Finally, reshape dx_col
  dx = im2col.col2im_indices(dx_col, x.shape, field_height=HH, field_width=WW, padding=0, stride=stride)

  pass
  #############################################################################
  #                             END OF YOUR CODE                              #
  #############################################################################
  return dx
Esempio n. 7
0
def max_pool_forward_naive(x, pool_param):
    """
    A naive implementation of the forward pass for a max-pooling layer.

    Inputs:
    - x: Input data, of shape (N, C, H, W)
    - pool_param: dictionary with the following keys:
      - 'pool_height': The height of each pooling region
      - 'pool_width': The width of each pooling region
      - 'stride': The distance between adjacent pooling regions

    No padding is necessary here. Output size is given by 

    Returns a tuple of:
    - out: Output data, of shape (N, C, H', W') where H' and W' are given by
      H' = 1 + (H - pool_height) / stride
      W' = 1 + (W - pool_width) / stride
    - cache: (x, pool_param)
    """
    out = None
    ###########################################################################
    # TODO: Implement the max-pooling forward pass                            #
    ###########################################################################
    N, C, H, W = x.shape
    H_d = int(1 + (H - pool_param['pool_height']) / pool_param['stride'])
    W_d = int(1 + (W - pool_param['pool_width']) / pool_param['stride'])
    out = np.zeros((N, C, H_d, W_d))
    mask = np.zeros(x.shape)
    for i in range(N):
        for j in range(C):
            x_temp = np.reshape(x[i][j], (1, 1, H, W))
            x_temp = im2col_indices(x_temp, pool_param['pool_height'],
                                    pool_param['pool_width'], 0,
                                    pool_param['stride'])
            out[i, j, :, :] = np.reshape(np.amax(x_temp, axis=0),
                                         (1, 1, H_d, W_d))
            inds = np.argmax(x_temp, axis=0)
            temp = np.zeros(x_temp.shape)
            temp[inds, range(H_d * W_d)] = 1
            mask[i, j, :, :] = col2im_indices(temp, (1, 1, H, W),
                                              pool_param['pool_height'],
                                              pool_param['pool_width'], 0,
                                              pool_param['stride'])
    pass
    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    cache = (x, pool_param, mask)
    return out, cache
Esempio n. 8
0
def conv_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a convolutional layer.

    Inputs:
    - dout: Upstream derivatives of shape (N, C, H, W)
    - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive
    
    - x: Input data of shape (N, C, H, W)
    - w: Filter weights of shape (F, C, HH, WW)
    - b: Biases, of shape (F,)
    Returns a tuple of:
    - dx: Gradient with respect to x
    - dw: Gradient with respect to w
    - db: Gradient with respect to b
    """
    dx, dw, db = None, None, None
    ###########################################################################
    # TODO: Implement the convolutional backward pass.                        #
    ###########################################################################
    x, w, b, conv_param = cache
    N, C, H, W = x.shape
    F, _, HH, WW = w.shape
    _, _, h_out, w_out = dout.shape
    stride = conv_param['stride']
    pad = conv_param['pad']

    # dx = np.zeros_like(x)
    # dw = np.zeros_like(w)
    # db = np.zeros_like(b)
    db = np.sum(dout, axis=(0, 2, 3))

    dout = dout.transpose(1, 2, 3, 0)
    dout = dout.reshape(dout.shape[0], -1)
    import cs231n.im2col as im2col
    X_col = im2col.im2col_indices(x, HH, WW, padding=pad, stride=stride)
    W_col = w.reshape(F, -1)

    dw = np.dot(dout, X_col.T)
    dx = np.dot(W_col.T, dout)
    dw = dw.reshape(F, C, HH, WW)
    dx = im2col.col2im_indices(dx, x.shape, field_height=HH, field_width=WW, padding=pad, stride=stride)

    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx, dw, db
Esempio n. 9
0
def max_pool_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a max pooling layer.

    Inputs:
    - dout: Upstream derivatives
    - cache: A tuple of (x, pool_param) as in the forward pass.

    Returns:
    - dx: Gradient with respect to x
    """
    dx = None
    ###########################################################################
    # TODO: Implement the max pooling backward pass                           #
    ###########################################################################
    x, pool_param = cache
    num_data, num_channels, im_height, im_width = x.shape
    pool_height, pool_width, stride = (pool_param['pool_height'],
                                       pool_param['pool_width'],
                                       pool_param['stride'])
    out_height = (im_height - pool_height) // stride + 1
    out_width = (im_width - pool_width) // stride + 1

    x_reshaped = x.reshape(num_data * num_channels, 1, im_height, im_width)
    x_col = im2col_indices(x_reshaped,
                           pool_height,
                           pool_width,
                           padding=0,
                           stride=stride)

    dx_col = np.zeros(x_col.shape)
    max_idx = np.argmax(x_col, axis=0)
    dx_col[max_idx, np.arange(dout.size)] = dout.transpose(2, 3, 0, 1).ravel()
    dx = col2im_indices(dx_col,
                        (num_data * num_channels, 1, im_height, im_width),
                        pool_height,
                        pool_width,
                        padding=0,
                        stride=stride)
    dx = dx.reshape(x.shape)

    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx
Esempio n. 10
0
def conv_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a convolutional layer.

    Inputs:
    - dout: Upstream derivatives.
    - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive

    Returns a tuple of:
    - dx: Gradient with respect to x
    - dw: Gradient with respect to w
    - db: Gradient with respect to b
    """
    dx, dw, db = None, None, None
    ###########################################################################
    # TODO: Implement the convolutional backward pass.                        #
    ###########################################################################
    x, w, b, conv_param = cache
    pad, stride = conv_param['pad'], conv_param['stride']
    num_data = dout.shape[0]
    num_filters, num_channels, filter_height, filter_width = w.shape

    dout_matrix = dout.transpose(1, 2, 3, 0).reshape(num_filters, -1)
    cols = im2col_indices(x,
                          filter_height,
                          filter_width,
                          padding=pad,
                          stride=stride)
    filter_matrix = w.reshape(num_filters, -1)

    db = np.sum(dout, axis=(0, 2, 3))
    dw = np.reshape(dout_matrix.dot(cols.T), w.shape)
    dx_col = filter_matrix.T.dot(dout_matrix)
    dx = col2im_indices(dx_col,
                        x.shape,
                        filter_height,
                        filter_width,
                        padding=pad,
                        stride=stride)

    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx, dw, db
Esempio n. 11
0
def conv_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a convolutional layer.

    Inputs:
    - dout: Upstream derivatives.
    - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive

    Returns a tuple of:
    - dx: Gradient with respect to x
    - dw: Gradient with respect to w
    - db: Gradient with respect to b
    """
    dx, dw, db = None, None, None
    x, w, b, conv_param = cache
    N, C, H, W = x.shape
    f_filter, c_fitler, h_filter, w_filter = w.shape
    ###########################################################################
    # TODO: Implement the convolutional backward pass.                        #
    ###########################################################################
    db = np.sum(dout, axis=(0, 2, 3))

    x_col = im2col.im2col_indices(x,
                                  h_filter,
                                  w_filter,
                                  padding=conv_param['pad'],
                                  stride=conv_param['stride'])
    dout_reshaped = dout.transpose(1, 2, 3, 0).reshape(f_filter, -1)
    dw = np.dot(dout_reshaped, x_col.T)
    dw = dw.reshape(w.shape)

    w_shape = w.reshape(f_filter, -1)
    dX_col = np.dot(w_shape.T, dout_reshaped)
    dx = im2col.col2im_indices(dX_col,
                               x.shape,
                               h_filter,
                               w_filter,
                               padding=conv_param['pad'],
                               stride=conv_param['stride'])

    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx, dw, db
Esempio n. 12
0
def max_pool_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a max pooling layer.

    Inputs:
    - dout: Upstream derivatives
    - cache: A tuple of (x, pool_param) as in the forward pass.

    Returns:
    - dx: Gradient with respect to x
    """
    dx = None
    ###########################################################################
    # TODO: Implement the max pooling backward pass                           #
    ###########################################################################
    x, pool_param = cache
    N, C, H, W = x.shape
    x_reshaped = x.reshape(N * C, 1, H, W)
    h_out = int(1 +
                (H + 2 * 0 - pool_param['pool_height']) / pool_param['stride'])
    w_out = int(1 +
                (W + 2 * 0 - pool_param['pool_width']) / pool_param['stride'])
    x_col = im2col.im2col_indices(x_reshaped,
                                  pool_param['pool_height'],
                                  pool_param['pool_width'],
                                  padding=0,
                                  stride=pool_param['stride'])
    max_idx = np.argmax(x_col, axis=0)
    dx_col = np.zeros_like(x_col)
    dout_ = dout.transpose(2, 3, 0, 1).ravel()
    dx_col[max_idx, range(max_idx.size)] = dout_
    dx = im2col.col2im_indices(dx_col, (N * C, 1, H, W),
                               pool_param['pool_height'],
                               pool_param['pool_width'],
                               padding=0,
                               stride=pool_param['stride'])
    dx = dx.reshape(x.shape)
    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx
Esempio n. 13
0
def conv_backward_naive(dout, cache):
    """
  A naive implementation of the backward pass for a convolutional layer.

  Inputs:
  - dout: Upstream derivatives.
  - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive

  Returns a tuple of:
  - dx: Gradient with respect to x
  - dw: Gradient with respect to w
  - db: Gradient with respect to b
  """
    dx, dw, db = None, None, None
    #############################################################################
    # TODO: Implement the convolutional backward pass.                          #
    #############################################################################
    x, w, b, conv_param = cache
    stride = conv_param['stride']
    pad = conv_param['pad']

    #print('pad', pad)
    N, C, H, W = x.shape
    F, C, HH, WW = w.shape
    #Hdot = 1 + (H+2*pad - HH) // stride
    #Wdot = 1 + (W + 2*pad -WW) // stride
    x_col = im2col_indices(x, HH, WW, pad, stride)
    #print('x_col shape', x_col.shape)
    w_transfer = w.reshape(F, -1)
    dout_t = dout.transpose(1, 2, 3, 0).reshape(F, -1)

    dx_col = np.dot(w_transfer.T, dout_t)
    dx = col2im_indices(dx_col, x.shape, HH, WW, pad, stride)

    dw_transfer = np.dot(dout_t, x_col.T)
    dw = dw_transfer.reshape(w.shape)
    db = np.sum(dout_t, axis=1)
    #############################################################################
    #                             END OF YOUR CODE                              #
    #############################################################################
    return dx, dw, db
Esempio n. 14
0
def conv_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a convolutional layer.

    Inputs:
    - dout: Upstream derivatives.
    - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive

    Returns a tuple of:
    - dx: Gradient with respect to x
    - dw: Gradient with respect to w
    - db: Gradient with respect to b
    """
    from cs231n.im2col import im2col_indices, col2im_indices
    x, w, b, conv_param = cache
    stride, pad = conv_param['stride'], conv_param['pad']
    F, C, HH, WW = w.shape
    N, C, H, W = x.shape
    dx, dw, db = None, None, None
    ###########################################################################
    # TODO: Implement the convolutional backward pass.                        #
    ###########################################################################
    db = np.sum(dout, axis=(0, 2, 3))
    # dout has shape (N, F, H_new, W_new)
    # dout_reshape has shape (F, H_new*W_new*N)
    dout_reshape = dout.transpose(1, 2, 3, 0).reshape((F, -1))

    # x_col has shape (C*HH*WW, N*H_new*W_new)
    x_col = im2col_indices(x, HH, WW, padding=pad, stride=stride)

    dw_ = np.dot(dout_reshape, x_col.transpose())
    dw = dw_.reshape(F, C, HH, WW)
    w_reshape = w.reshape(F, -1)
    dx_ = np.dot(w_reshape.transpose(), dout_reshape)
    dx = col2im_indices(dx_, x.shape, HH, WW, padding=pad, stride=stride)
    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx, dw, db
Esempio n. 15
0
def max_pool_backward_naive(dout, cache):
    """
    A naive implementation of the backward pass for a max pooling layer.

    Inputs:
    - dout: Upstream derivatives
    - cache: A tuple of (x, pool_param) as in the forward pass.

    Returns:
    - dx: Gradient with respect to x
    """
    from cs231n.im2col import im2col_indices, col2im_indices
    dx = None
    ###########################################################################
    # TODO: Implement the max pooling backward pass                           #
    ###########################################################################
    x, pool_param = cache
    N, C, H, W = x.shape
    pool_height, pool_width, stride = pool_param['pool_height'], \
        pool_param['pool_width'], pool_param['stride']
    out_mask = pool_param['out_mask']
    N, C, H_new, W_new = dout.shape
    dout_ = dout.transpose(2, 3, 0, 1).reshape([N * C * H_new * W_new])

    dx_ = dout_ * out_mask
    dx_ = col2im_indices(dx_, [N * C, 1, H, W],
                         pool_height,
                         pool_width,
                         padding=0,
                         stride=stride)
    #print(out_mask)
    dx = dx_.reshape(N, C, W, H)

    ###########################################################################
    #                             END OF YOUR CODE                            #
    ###########################################################################
    return dx
def conv_forward_naive(x, w, b, conv_param):
  """
  A naive implementation of the forward pass for a convolutional layer.

  The input consists of N data points, each with C channels, height H and width
  W. We convolve each input with F different filters, where each filter spans
  all C channels and has height HH and width HH.

  Input:
  - x: Input data of shape (N, C, H, W)
  - w: Filter weights of shape (F, C, HH, WW)
  - b: Biases, of shape (F,)
  - conv_param: A dictionary with the following keys:
    - 'stride': The number of pixels between adjacent receptive fields in the
      horizontal and vertical directions.
    - 'pad': The number of pixels that will be used to zero-pad the input.

  Returns a tuple of:
  - out: Output data, of shape (N, F, H', W') where H' and W' are given by
    H' = 1 + (H + 2 * pad - HH) / stride
    W' = 1 + (W + 2 * pad - WW) / stride
  - cache: (x, w, b, conv_param)
  """
  out = None
  #############################################################################
  # TODO: Implement the convolutional forward pass.                           #
  # Hint: you can use the function np.pad for padding.                        #
  #############################################################################

  # Unpack params
  pad = conv_param['pad']
  stride = conv_param['stride']
  (N, C, H, W) = x.shape
  (F, C, HH, WW) = w.shape

  # Calculate H' and W'
  H_ = 1 + (H + 2 * pad - HH) / stride
  W_ = 1 + (W + 2 * pad - WW) / stride

  # TODO: Add some exception throwing here if H_ and W_ are not ints

  # Calculate x_col using the im2col helper function
  x_col = im2col.im2col_indices(x, HH, WW, padding=pad, stride=stride)

  # Calculate w_row using the im2col helper function
  w_row = im2col.im2col_indices(w, HH, WW, padding=0, stride=1)

  # Pad out x_col with ones so we can use the bias trick
  x_col_1 = np.vstack((x_col, np.ones(x_col.shape[-1])))

  # Pad out w_row with the bias term b
  w_row_1 = np.vstack((w_row, b))

  # Perform the convolution 
  out_ = np.dot(w_row_1.T, x_col_1)

  # Reshape the output using the col2im helper function
  out = im2col.col2im_indices(out_, (N,F,H_,W_), field_height=1, field_width=1, padding=0, stride=1)

  pass
  #############################################################################
  #                             END OF YOUR CODE                              #
  #############################################################################
  cache = (x, w, b, conv_param)
  return out, cache