Esempio n. 1
0
def add_cp_dimension(doctest_namespace):
    doctest_namespace["cp"] = cp
    doctest_namespace["np"] = np
    doctest_namespace["Dimension"] = Dimension
    doctest_namespace["DependentVariable"] = DependentVariable
    doctest_namespace["x"] = Dimension(
        type="linear",
        description="This is a test",
        count=10,
        increment="5 G",
        coordinates_offset="10 mT",
        origin_offset="10 T",
        label="field strength",
    )

    doctest_namespace["dimension_dictionary"] = {
        "type": "linear",
        "description": "This is a test",
        "count": 10,
        "increment": "5 G",
        "coordinates_offset": "10 mT",
        "origin_offset": "10 T",
        "label": "field strength",
    }

    numpy_array = np.arange(30).reshape(3, 10).astype(np.float32)
    doctest_namespace["y"] = DependentVariable(
        type="internal",
        description="A test image",
        name="star",
        unit="W s",
        quantity_name="energy",
        quantity_type="pixel_3",
        components=numpy_array,
    )

    doctest_namespace["dependent_variable_dictionary"] = {
        "type": "internal",
        "description": "A test image",
        "name": "star",
        "unit": "W s",
        "quantity_name": "energy",
        "quantity_type": "pixel_3",
        "components": numpy_array,
    }

    doctest_namespace["data"] = cp.load(cp.tests.test01)
    doctest_namespace["my_data"] = cp.load(cp.tests.test02)
Esempio n. 2
0
def test02():
    dataset = cp.load(cp.tests.test02)

    assert dataset.dependent_variables[0].type == "internal"

    # encoding is always set to 'base64' after import
    assert dataset.dependent_variables[0].encoding == "base64"

    assert dataset.dependent_variables[0].numeric_type == "float64"

    assert dataset.dependent_variables[0].components.dtype == np.float64

    assert dataset.description == "Base64 encoding test"

    assert len(dataset.dependent_variables) == 4

    assert len(dataset.dimensions) == 1

    assert dataset.dimensions[0].type == "monotonic"

    assert str(dataset.dimensions[0].origin_offset) == "0.0 cm"

    assert dataset.dimensions[0].count == 10

    assert dataset.dimensions[0].quantity_name == "length"
Esempio n. 3
0
def test01():
    dataset = cp.load(cp.tests.test01)

    assert dataset.dependent_variables[0].type == "internal"

    # encoding is always set to 'base64' after import
    assert dataset.dependent_variables[0].encoding == "base64"

    assert dataset.dependent_variables[0].numeric_type == "float32"

    assert dataset.dependent_variables[0].components.dtype == np.float32

    assert dataset.description == "A simulated sine curve."

    assert len(dataset.dependent_variables) == 1

    assert len(dataset.dimensions) == 1

    assert dataset.dimensions[0].type == "linear"

    assert str(dataset.dimensions[0].increment) == "0.1 s"

    assert str(dataset.dimensions[0].origin_offset) == "0.0 s"

    assert dataset.dimensions[0].count == 10

    assert dataset.dimensions[0].quantity_name == "time"

    assert np.all(dataset.dimensions[0].coordinates.value == np.arange(10) *
                  0.1)
Esempio n. 4
0
def test_fista():
    domain = "https://sandbox.zenodo.org/record/1065394/files"
    filename = f"{domain}/test1_signal.csdf"
    signal = cp.load(filename)
    sigma = 0.0008

    datafile = f"{domain}/test1_t2.csdf"
    true_dist = cp.load(datafile)

    kernel_dimension = signal.dimensions[0]
    relaxT2 = relaxation.T2(
        kernel_dimension=kernel_dimension,
        inverse_dimension=dict(
            count=64,
            minimum="1e-2 s",
            maximum="1e3 s",
            scale="log",
            label="log (T2 / s)",
        ),
    )
    inverse_dimension = relaxT2.inverse_dimension
    K = relaxT2.kernel(supersampling=1)

    new_system = TSVDCompression(K, signal)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    assert new_system.truncation_index == 29

    lambdas = 10 ** (-5 + 4 * (np.arange(16) / 15))

    f_lasso_cv = LassoFistaCV(
        lambdas=lambdas,  # A numpy array of lambda values.
        folds=5,  # The number of folds in n-folds cross-validation.
        sigma=sigma,  # noise standard deviation
        inverse_dimension=inverse_dimension,  # previously defined inverse dimensions.
    )

    f_lasso_cv.fit(K=compressed_K, s=compressed_s)

    sol = f_lasso_cv.f
    assert np.argmax(sol.y[0].components[0]) == np.argmax(true_dist.y[0].components[0])

    residuals = f_lasso_cv.residuals(K=K, s=signal)
    std = residuals.std()
    np.testing.assert_almost_equal(std.value, sigma, decimal=3)
Esempio n. 5
0
def test_inversion():
    domain = "https://www.ssnmr.org/sites/default/files/mrsimulator"
    filename = f"{domain}/MAS_SE_PIETA_5%25Li2O_FT.csdf"
    data_object = cp.load(filename)

    # Inversion only requires the real part of the complex dataset.
    data_object = data_object.real
    sigma = 1110.521  # data standard deviation

    # Convert the MAS dimension from Hz to ppm.
    data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

    data_object = data_object.T
    data_object_truncated = data_object[:, 1220:-1220]

    data_object_truncated.dimensions[0].to("s")  # set coordinates to 's'
    kernel_dimension = data_object_truncated.dimensions[0]

    relaxT2 = relaxation.T2(
        kernel_dimension=kernel_dimension,
        inverse_dimension=dict(
            count=32,
            minimum="1e-3 s",
            maximum="1e4 s",
            scale="log",
            label="log (T2 / s)",
        ),
    )
    inverse_dimension = relaxT2.inverse_dimension
    K = relaxT2.kernel(supersampling=20)

    new_system = TSVDCompression(K, data_object_truncated)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    assert new_system.truncation_index == 18

    # setup the pre-defined range of alpha and lambda values
    lambdas = 10 ** (-4 + 5 * (np.arange(32) / 31))

    # setup the smooth lasso cross-validation class
    s_lasso = LassoFistaCV(
        lambdas=lambdas,  # A numpy array of lambda values.
        sigma=sigma,  # data standard deviation
        folds=5,  # The number of folds in n-folds cross-validation.
        inverse_dimension=inverse_dimension,  # previously defined inverse dimensions.
    )

    # run the fit method on the compressed kernel and compressed data.
    s_lasso.fit(K=compressed_K, s=compressed_s)
    np.testing.assert_almost_equal(s_lasso.hyperparameters["lambda"], 0.116, decimal=1)

    s_lasso.cv_plot()

    residuals = s_lasso.residuals(K=K, s=data_object_truncated)
    np.testing.assert_almost_equal(residuals.std().value, 1538.48, decimal=1)
Esempio n. 6
0
    plt.tight_layout()
    plt.show()


# %%
# Dataset setup
# -------------
#
# Import the dataset
# ''''''''''''''''''
#
# Load the dataset. Here, we import the dataset as the CSDM data-object.

# The 2D MAF dataset in csdm format
filename = "https://sandbox.zenodo.org/record/1065347/files/2Na2O_3SiO2_MAF.csdf"
data_object = cp.load(filename)

# For inversion, we only interest ourselves with the real part of the complex dataset.
data_object = data_object.real

# We will also convert the coordinates of both dimensions from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in data_object.dimensions]

# %%
# Here, the variable ``data_object`` is a
# `CSDM <https://csdmpy.readthedocs.io/en/latest/api/CSDM.html>`_
# object that holds the real part of the 2D MAF dataset. The plot of the 2D MAF dataset
# is
plot2D(data_object)

# %%
Esempio n. 7
0
from mrsimulator import Simulator, SpinSystem, Site
from mrsimulator.methods import BlochDecaySpectrum
from mrsimulator import signal_processing as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.spin_system.tensors import SymmetricTensor

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
# Use the `csdmpy <https://csdmpy.readthedocs.io/en/stable/index.html>`_
# module to load the synthetic dataset as a CSDM object.
file_ = "https://sandbox.zenodo.org/record/835664/files/synthetic_cuspidine_test.csdf?"
synthetic_experiment = cp.load(file_).real

# standard deviation of noise from the dataset
sigma = 0.03383338

# convert the dimension coordinates from Hz to ppm
synthetic_experiment.x[0].to("ppm", "nmr_frequency_ratio")

# Plot of the synthetic dataset.
plt.figure(figsize=(4.25, 3.0))
ax = plt.subplot(projection="csdm")
ax.plot(synthetic_experiment, "k", alpha=0.5)
ax.set_xlim(50, -200)
plt.grid()
plt.tight_layout()
plt.show()
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel import relaxation
from mrinversion.linear_model import LassoFistaCV, TSVDCompression

# sphinx_gallery_thumbnail_number = 3

# %%
# Dataset setup
# -------------
# Load the dataset
# ''''''''''''''''
domain = "https://sandbox.zenodo.org/record/1065394/files"
filename = f"{domain}/test1_signal.csdf"
signal = cp.load(filename)
sigma = 0.0008

# %%
# The variable ``signal`` holds the 1D dataset. For comparison, let's
# also import the true t2 distribution from which the synthetic 1D signal
# decay is simulated.
datafile = f"{domain}/test1_t2.csdf"
true_t2_dist = cp.load(datafile)

plt.figure(figsize=(4.5, 3.5))
signal.plot()
plt.tight_layout()
plt.show()

# %%
Esempio n. 9
0
def test04():
    data1 = cp.load(cp.tests.test04)
    data2 = data1.copy()
    assert data1.data_structure == data2.data_structure
import matplotlib.pyplot as plt
from lmfit import Minimizer

from mrsimulator import Simulator, SpinSystem, Site
from mrsimulator.methods import BlochDecaySpectrum
from mrsimulator import signal_processing as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.utils import get_spectral_dimensions

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
name = "https://sandbox.zenodo.org/record/814455/files/LHistidine_cross_section.csdf"
pass_cross_section = cp.load(name)

# standard deviation of noise from the dataset
sigma = 4.640351

# For the spectral fitting, we only focus on the real part of the complex dataset.
pass_cross_section = pass_cross_section.real

# Convert the coordinates along each dimension from Hz to ppm.
_ = [
    item.to("ppm", "nmr_frequency_ratio")
    for item in pass_cross_section.dimensions
]

# The plot of the dataset.
plt.figure(figsize=(4.25, 3.0))
Esempio n. 11
0
from lmfit import Minimizer

from mrsimulator import Simulator
from mrsimulator.methods import SSB2D
from mrsimulator import signal_processing as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.utils import get_spectral_dimensions
from mrsimulator.utils.collection import single_site_system_generator

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
filename = "https://sandbox.zenodo.org/record/814455/files/1H13C_CPPASS_LHistidine.csdf"
mat_data = cp.load(filename)

# standard deviation of noise from the dataset
sigma = 0.4192854

# For the spectral fitting, we only focus on the real part of the complex dataset.
mat_data = mat_data.real

# Convert the coordinates along each dimension from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in mat_data.dimensions]

# %%
# When using the SSB2D method, ensure the horizontal dimension of the dataset is the
# isotropic dimension. Here, we apply an appropriate transpose operation to the dataset.
mat_data = mat_data.T  # transpose
Esempio n. 12
0
from mrsimulator import Simulator, SpinSystem, Site
from mrsimulator.methods import BlochDecaySpectrum
from mrsimulator.utils import get_spectral_dimensions
from mrsimulator.utils.spectral_fitting import LMFIT_min_function, make_LMFIT_params
from lmfit import Minimizer, report_fit

# global plot configuration
mpl.rcParams["figure.figsize"] = [4.5, 3.0]
mpl.rcParams["grid.linestyle"] = "--"
# sphinx_gallery_thumbnail_number = 4

# %%
# Import the dataset
# ------------------
filename = "https://sandbox.zenodo.org/record/687656/files/1H13C_CPPASS_LHistidine.csdf"
pass_data = cp.load(filename)

# For the spectral fitting, we only focus on the real part of the complex dataset.
# The script assumes that the dimension at index 0 is the isotropic dimension.
# Transpose the dataset as required.
pass_data = pass_data.real.T

# Convert the coordinates along each dimension from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in pass_data.dimensions]

# Normalize the spectrum.
pass_data /= pass_data.max()

# The plot of the dataset.
levels = (np.arange(10) + 0.3) / 15  # contours are drawn at these levels.
ax = plt.subplot(projection="csdm")
Esempio n. 13
0
from lmfit import Minimizer

from mrsimulator import Simulator, SpinSystem, Site
from mrsimulator.method.lib import SSB2D
from mrsimulator import signal_processor as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.utils import get_spectral_dimensions
from mrsimulator.spin_system.tensors import SymmetricTensor

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
filename = "https://ssnmr.org/sites/default/files/mrsimulator/Rb2SO4_QMAT.csdf"
qmat_dataset = cp.load(filename)

# standard deviation of noise from the dataset
sigma = 6.530634

# For the spectral fitting, we only focus on the real part of the complex dataset.
qmat_dataset = qmat_dataset.real

# Convert the coordinates along each dimension from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in qmat_dataset.dimensions]

# plot of the dataset.
max_amp = qmat_dataset.max()
levels = (np.arange(31) +
          0.15) * max_amp / 32  # contours are drawn at these levels.
options = dict(levels=levels, alpha=1, linewidths=0.5)  # plot options
Esempio n. 14
0
def test00():
    error = "Missing a required data file address."
    with pytest.raises(Exception, match=".*{0}.*".format(error)):
        cp.load()
Esempio n. 15
0
from mrsimulator.methods import BlochDecayCTSpectrum
from mrsimulator import signal_processing as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.utils import get_spectral_dimensions

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
#
# Import the experimental data. We use dataset file serialized with the CSDM
# file-format, using the
# `csdmpy <https://csdmpy.readthedocs.io/en/stable/index.html>`_ module.
filename = "https://sandbox.zenodo.org/record/814455/files/Na2SiO3_O17.csdf"
experiment = cp.load(filename)

# standard deviation of noise from the dataset
sigma = 1.931335

# For spectral fitting, we only focus on the real part of the complex dataset
experiment = experiment.real

# Convert the dimension coordinates from Hz to ppm.
experiment.x[0].to("ppm", "nmr_frequency_ratio")

# plot of the dataset.
plt.figure(figsize=(4.25, 3.0))
ax = plt.subplot(projection="csdm")
ax.plot(experiment, color="black", linewidth=0.5, label="Experiment")
ax.set_xlim(100, -50)
Esempio n. 16
0
    ax.set_aspect("equal")


# %%
# Dataset setup
# -------------
#
# Import the dataset
# ''''''''''''''''''
#
# Load the dataset. Here, we import the dataset as a CSDM data-object.

# the 1D MAF cross-section data in csdm format
domain = "https://sandbox.zenodo.org/record/1065347/files"
filename = f"{domain}/puxfgdh25rru1q3li124anylkgup8rdp.csdf"
data_object = cp.load(filename)

# convert the data dimension from `Hz` to `ppm`.
data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

# %%
# The variable ``data_object`` holds the 1D MAF cross-section. For comparison, let's
# also import the true tensor parameter distribution from which the synthetic 1D pure
# anisotropic MAF cross-section line-shape is simulated.
datafile = f"{domain}/s5wpm26w4cv3w64qjhouqu458ch4z0nd.csdf"
true_data_object = cp.load(datafile)

# %%
# The plot of the 1D MAF cross-section along with the 2D true tensor parameter
# distribution of the synthetic dataset is shown below.
Esempio n. 17
0
# -*- coding: utf-8 -*-
"""CSDM main."""
import sys

import csdmpy as cp
from csdmpy.helper_functions import preview

__author__ = "Deepansh J. Srivastava"
__email__ = "*****@*****.**"

if __name__ == "__main__":
    for i in range(len(sys.argv) - 1):
        data = cp.load(sys.argv[i + 1])
        preview(data)
Esempio n. 18
0
from mrsimulator import Simulator
from mrsimulator.method.lib import SSB2D
from mrsimulator import signal_processor as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.utils import get_spectral_dimensions
from mrsimulator.utils.collection import single_site_system_generator

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
host = "https://ssnmr.org/sites/default/files/mrsimulator/"
filename = "1H13C_CPPASS_LHistidine.csdf"
mat_dataset = cp.load(host + filename)

# standard deviation of noise from the dataset
sigma = 0.4192854

# For the spectral fitting, we only focus on the real part of the complex dataset.
mat_dataset = mat_dataset.real

# Convert the coordinates along each dimension from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in mat_dataset.dimensions]

# %%
# When using the SSB2D method, ensure the horizontal dimension of the dataset is the
# isotropic dimension. Here, we apply an appropriate transpose operation to the dataset.
mat_dataset = mat_dataset.T  # transpose
from mrsimulator.spin_system.tensors import SymmetricTensor

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the datasets
# -------------------
# Import the datasets and assign the standard deviation of noise for each dataset. Here,
# ``sigma1``, ``sigma2``, and ``sigma3`` are the noise standard deviation for the
# dataset acquired at  5 kHz, 1.94 kHz, and 960 Hz spinning speeds, respectively.
host = "https://nmr.cemhti.cnrs-orleans.fr/Dmfit/Help/csdm/"
filename1 = "13C MAS 5000Hz - Glycine.csdf"
filename2 = "13C MAS 1940Hz - Glycine.csdf"
filename3 = "13C MAS 960Hz - Glycine.csdf"

experiment1 = cp.load(host + filename1).real
experiment2 = cp.load(host + filename2).real
experiment3 = cp.load(host + filename3).real
experiments = [experiment1, experiment2, experiment3]

# standard deviation of noise from the dataset
sigma1 = 1.97637
sigma2 = 3.822249
sigma3 = 3.982936
sigmas = [sigma1, sigma2, sigma3]

# Convert the coordinates along each dimension from Hz to ppm for each dataset
fig, ax = plt.subplots(1,
                       3,
                       figsize=(12, 3),
                       subplot_kw={"projection": "csdm"})
Esempio n. 20
0
from mrsimulator import Simulator, Site, SpinSystem
from mrsimulator.method.lib import BlochDecayCTSpectrum
from mrsimulator import signal_processor as sp
from mrsimulator.utils import spectral_fitting as sf
from mrsimulator.utils import get_spectral_dimensions
from mrsimulator.spin_system.tensors import SymmetricTensor

# sphinx_gallery_thumbnail_number = 3

# %%
# Import the dataset
# ------------------
host = "https://ssnmr.org/sites/default/files/mrsimulator/"
filename = "11B_lithum_orthoborate.csdf"
experiment = cp.load(host + filename)

# standard deviation of noise from the dataset
sigma = 0.08078374

# For spectral fitting, we only focus on the real part of the complex dataset
experiment = experiment.real

# Convert the coordinates along each dimension from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in experiment.dimensions]

# plot of the dataset.
plt.figure(figsize=(4.25, 3.0))
ax = plt.subplot(projection="csdm")
ax.plot(experiment, "k", alpha=0.5)
ax.set_xlim(100, -100)
Esempio n. 21
0
def test_01():
    domain = "https://sandbox.zenodo.org/record/1065347/files"
    filename = f"{domain}/8lnwmg0dr7y6egk40c2orpkmmugh9j7c.csdf"
    data_object = cp.load(filename)
    data_object = data_object.real
    _ = [item.to("ppm", "nmr_frequency_ratio") for item in data_object.dimensions]

    data_object = data_object.T
    data_object_truncated = data_object[:, 155:180]

    anisotropic_dimension = data_object_truncated.dimensions[0]
    inverse_dimensions = [
        cp.LinearDimension(count=25, increment="400 Hz", label="x"),
        cp.LinearDimension(count=25, increment="400 Hz", label="y"),
    ]

    lineshape = ShieldingPALineshape(
        anisotropic_dimension=anisotropic_dimension,
        inverse_dimension=inverse_dimensions,
        channel="29Si",
        magnetic_flux_density="9.4 T",
        rotor_angle="87.14°",
        rotor_frequency="14 kHz",
        number_of_sidebands=4,
    )
    K = lineshape.kernel(supersampling=2)

    new_system = TSVDCompression(K, data_object_truncated)
    compressed_K = new_system.compressed_K
    compressed_s = new_system.compressed_s

    assert new_system.truncation_index == 87

    s_lasso = SmoothLasso(
        alpha=2.07e-7, lambda1=7.85e-6, inverse_dimension=inverse_dimensions
    )
    s_lasso.fit(K=compressed_K, s=compressed_s)
    f_sol = s_lasso.f

    residuals = s_lasso.residuals(K=K, s=data_object_truncated)

    # assert np.allclose(residuals.mean().value, 0.00048751)
    np.testing.assert_almost_equal(residuals.std().value, 0.00336372, decimal=2)

    f_sol /= f_sol.max()
    [item.to("ppm", "nmr_frequency_ratio") for item in f_sol.dimensions]

    Q4_region = f_sol[0:8, 0:8, 3:18]
    Q4_region.description = "Q4 region"

    Q3_region = f_sol[0:8, 11:22, 8:20]
    Q3_region.description = "Q3 region"

    # Analysis
    int_Q4 = stats.integral(Q4_region)  # volume of the Q4 distribution
    mean_Q4 = stats.mean(Q4_region)  # mean of the Q4 distribution
    std_Q4 = stats.std(Q4_region)  # standard deviation of the Q4 distribution

    int_Q3 = stats.integral(Q3_region)  # volume of the Q3 distribution
    mean_Q3 = stats.mean(Q3_region)  # mean of the Q3 distribution
    std_Q3 = stats.std(Q3_region)  # standard deviation of the Q3 distribution

    np.testing.assert_almost_equal(
        (100 * int_Q4 / (int_Q4 + int_Q3)).value, 60.45388973909665, decimal=1
    )

    np.testing.assert_almost_equal(
        np.asarray([mean_Q4[0].value, mean_Q4[1].value, mean_Q4[2].value]),
        np.asarray([8.604842824865958, 9.05845796147297, -103.6976331077773]),
        decimal=0,
    )

    np.testing.assert_almost_equal(
        np.asarray([mean_Q3[0].value, mean_Q3[1].value, mean_Q3[2].value]),
        np.asarray([10.35036818411856, 79.02481579085152, -90.58326773441284]),
        decimal=0,
    )

    np.testing.assert_almost_equal(
        np.asarray([std_Q4[0].value, std_Q4[1].value, std_Q4[2].value]),
        np.asarray([4.525457744683861, 4.686253809896416, 5.369228151035292]),
        decimal=0,
    )

    np.testing.assert_almost_equal(
        np.asarray([std_Q3[0].value, std_Q3[1].value, std_Q3[2].value]),
        np.asarray([6.138761032132587, 7.837190479891721, 4.210912435356488]),
        decimal=0,
    )