Esempio n. 1
0
sys.path.insert(0, "./")

import csgan as cs

if os.path.exists('../dataset/'):
    prefix = '../dataset/'
elif os.path.exists('../../dataset/'):
    prefix = '../../dataset/'
else:
    raise Exception('Dataset not found!')

dataset_files = [
    'map1n_allz_rtaapixlw_2048_1.fits', 'map1n_allz_rtaapixlw_2048_2.fits',
    'map1n_allz_rtaapixlw_2048_3.fits'
]
dp = cs.Data_Provider([prefix + file_name for file_name in dataset_files],
                      preprocess_mode=2)

batch_size = 16
image_size = 128
gf_dim = 64
df_dim = 64
z_dim = 128


def dpp(n):
    return dp(n, image_size).reshape(n, image_size, image_size, 1)


##################################################################
from csgan.ops import lrelu, conv2d, linear
import tensorflow as tf
Esempio n. 2
0
        d =np.sqrt(scharrx**2+scharry**2)
        
    return d

def filt_all(maps,func):
    out1 = []
    for m in maps:
        out1.append(func(m))
        
    return np.stack([maps,np.array(out1)],axis=3)

def func(dt):
    return canny(dt,0,'none','sch')
    
    
dp = cs.Data_Provider('../../../strings/map1n_allz_rtaapixlw_4096_1b')

ims = 512

import tensorflow as tf
def conv2d(x, W):
  return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')

def avg_pool_2x2(x):
  return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

def discriminator(x_image, reuse=False, n_channel=2):
    with tf.variable_scope('discriminator') as scope:
        if (reuse):
            tf.get_variable_scope().reuse_variables()
        #First Conv and Pool Layers
Esempio n. 3
0
    out1 = []
    for m in maps:
        out1.append(func(m))

    return np.stack([maps, np.array(out1)], axis=3)


def func(dt):
    return canny(dt, 0, 'none', 'sch')


file_list = [
    '../../dataset/map1n_allz_rtaapixlw_2048_' + str(i) + '.fits'
    for i in range(1, 4)
]
dp = cs.Data_Provider(file_list, preprocess_mode=2)

#dt = filt_all(dp(10,128),func)
#dt.shape
#fig,(ax1,ax2)=plt.subplots(1,2,figsize=(8,18))
#ax1.imshow(dt[0,:,:,0])
#ax2.imshow(dt[0,:,:,1])

batch_size = 64
image_size = 256
checkpoint_dir = './checkpoint/' + sys.argv[0][:-3]
sample_dir = './samples/' + sys.argv[0][:-3]


def dpp(n):
    #    return dp(n,image_size).reshape(n,image_size,image_size,1)
Esempio n. 4
0
    out1 = []
    for m in maps:
        out1.append(func(m))

    return np.stack([maps, np.array(out1)], axis=3)


def func(dt):
    return canny(dt, 0, 'none', 'sch')


file_list = [
    '../../dataset/map1n_allz_rtaapixlw_2048_' + str(i) + '.fits'
    for i in range(1, 2)
]
dp = cs.Data_Provider(file_list)

#dt = filt_all(dp(10,128),func)
#dt.shape
#fig,(ax1,ax2)=plt.subplots(1,2,figsize=(8,18))
#ax1.imshow(dt[0,:,:,0])
#ax2.imshow(dt[0,:,:,1])

batch_size = 512

image_size = 128
gf_dim = 8

z_dim = 4096
#(image_size/16)**2*gf_dim*8==z_dim