# define data set datadir = os.getenv('CSH_DATA') filenames = [datadir + '/1342185454_blue_PreparedFrames.fits[5954:67614]', datadir + '/1342185455_blue_PreparedFrames.fits[5954:67615]'] # no compression output_path = os.path.join(os.getenv('HOME'), 'data', 'csh', 'output',) # compression modes compressions = ["", "ca", "cs"] #compressions = ["ca"] # median filter length deglitch=True covariance=True filtering = True filter_length = 10000 hypers = (1e9, 1e9) ext = ".fits" pre = "ngc6946_rls_cov_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames[0]) del tod, projection, obs # find a map for each compression and save it for comp in compressions: sol.append(csh.rls(filenames, compression=comp, hypers=hypers, header=header, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
#!/usr/bin/env python import os import csh # define data set datadir = os.getenv('CSH_DATA') filenames = [datadir + '/1342185454_blue_PreparedFrames.fits[5954:67614]', datadir + '/1342185455_blue_PreparedFrames.fits[5954:67615]'] # no compression output_path = os.path.join(os.getenv('HOME'), 'data', 'csh', 'output',) # compression modes compressions = ["", "ca", "cs"] # median filter length filtering = True filter_length = 10000 hypers = (1e8, 1e8) ext = ".fits" pre = "ngc6946_rls_cov_" # to store results sol = [] # find a map for each compression and save it for comp in compressions: sol.append(csh.rls(filenames, compression=comp, hypers=hypers, deglitch=False, filtering=filtering, filter_length=filter_length, algo=csh.lo.acg )) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
wavelet = None ext = ".fits" pre = "ngc6946_huber_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) del tod, projection, obs # find a map for each compression and save it for comp in compressions: sol.append( csh.rls(filenames, compression=comp, hypers=hypers, header=header, factor=factor, algo=algo, deltas=deltas, wavelet=wavelet, tol=tol, maxiter=maxiter, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
# compression modes #compressions = ["", "ca", "cs"] compressions = ["ca"] # median filter length algo = lo.acg deglitch = True covariance = True decompression = True filtering = True filter_length = 10000 hypers = (1e8, 1e8) ext = ".fits" pre = "ngc6946_madmap_acg_" # to store results sol = [] # find a map for each compression and save it for comp in compressions: sol.append( csh.rls(filenames, compression=comp, hypers=hypers, deglitch=deglitch, covariance=covariance, decompression=decompression, filtering=filtering, filter_length=filter_length, algo=algo, tol=1e-8)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
# no compression output_path = os.path.join( os.getenv('HOME'), 'data', 'csh', 'output', ) # compression modes compression = "" # median filter length deglitch = True covariance = True decompression = True filtering = True filter_length = 10000 hypers = (1e9, 1e9) ext = ".fits" pre = "abell2218_madmap1_" # to store results # find a map for each compression and save it sol = csh.rls(filenames, compression=compression, hypers=hypers, deglitch=deglitch, covariance=covariance, decompression=decompression, filtering=filtering, filter_length=filter_length) fname = os.path.join(output_path, pre + compression + ext) sol.writefits(fname)
bpj.writefits(os.path.join(output_path, pre + 'bpj' + ext)) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) naive = bpj / weights naive[np.isnan(naive)] = 0. naive.writefits(os.path.join(output_path, pre + 'naive' + ext)) del tod, projection, obs # find a map for each compression and save it # to store results bpj = True sol = [] bpjs = [] for comp in compressions: print("Inversion with " + comp + " compression") if comp == "": hypers = (1/8., 1/8.) else: hypers = (1e0, 1e0) s, b = csh.rls(filenames, compression=comp, hypers=hypers, header=header, deltas=deltas, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length, algo=lo.hacg, tol=1e-8, wavelet=wavelet, bpj=bpj ) sol.append(s) bpjs.append(b) fname = os.path.join(output_path, pre + comp) bpjs[-1].writefits(fname + '_bpj' + ext) sol[-1].writefits(fname + ext)
filter_length = 100 #hypers = (1e9, 1e9) hypers = (1e0, 1e0) ext = ".fits" pre = "abell2218_high_red_rls_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) del tod, projection, obs # find a map for each compression and save it for comp in compressions: if comp == "": hypers = (1 / 8., 1 / 8.) else: hypers = (1e0, 1e0) sol.append( csh.rls(filenames, compression=comp, hypers=hypers, header=header, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
] # no compression output_path = os.path.join( os.getenv('HOME'), 'data', 'csh', 'output', ) # compression modes compressions = ["", "ca", "cs"] # median filter length filtering = True filter_length = 10000 hypers = (1e8, 1e8) ext = ".fits" pre = "ngc6946_rls_cov_" # to store results sol = [] # find a map for each compression and save it for comp in compressions: sol.append( csh.rls(filenames, compression=comp, hypers=hypers, deglitch=False, filtering=filtering, filter_length=filter_length, algo=csh.lo.acg)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
import os import csh # define data set datadir = os.getenv('CSH_DATA') ids = ['1342184518', '1342184519', '1342184596', '1342184597', '1342184598', '1342184599'] filenames = [os.path.join(datadir, id_str + '_blue_PreparedFrames.fits') for id_str in ids] # no compression output_path = os.path.join(os.getenv('HOME'), 'data', 'csh', 'output',) # compression modes compression = "" # median filter length deglitch=True covariance=True decompression=True filtering = True filter_length = 10000 hypers = (1e9, 1e9) ext = ".fits" pre = "abell2218_madmap1_" # to store results # find a map for each compression and save it sol = csh.rls(filenames, compression=compression, hypers=hypers, deglitch=deglitch, covariance=covariance, decompression=decompression, filtering=filtering, filter_length=filter_length) fname = os.path.join(output_path, pre + compression + ext) sol.writefits(fname)
covariance=False filtering = True filter_length = 1000 hypers = (1e7, 1e7) #hypers = (1e2, 1e2) deltas = (None, 1e-8, 1e-8) algo = lo.hacg tol = 1e-5 maxiter = 30 #wavelet = 'haar' wavelet = None ext = ".fits" pre = "ngc6946_huber_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) del tod, projection, obs # find a map for each compression and save it for comp in compressions: sol.append(csh.rls(filenames, compression=comp, hypers=hypers, header=header, factor=factor, algo=algo, deltas=deltas, wavelet=wavelet, tol=tol, maxiter=maxiter, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length)) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
filtering = True filter_length = 100 #hypers = (1e9, 1e9) hypers = (1e0, 1e0) wavelet='haar' deltas = (None, 1e-8, 1e-8) ext = ".fits" pre = "abell2218_high_red_huber_" # to store results sol = [] # define same header for all maps tod, projection, header, obs = csh.load_data(filenames) # get the weight map weights = projection.transpose(tod.ones(tod.shape)) weights.writefits(os.path.join(output_path, pre + 'weights' + ext)) del tod, projection, obs # find a map for each compression and save it for comp in compressions: if comp == "": hypers = (1/8., 1/8.) else: hypers = (1e0, 1e0) sol.append(csh.rls(filenames, compression=comp, hypers=hypers, header=header, deltas=deltas, deglitch=deglitch, covariance=covariance, filtering=filtering, filter_length=filter_length, algo=lo.hacg, tol=1e-8, wavelet=wavelet )) fname = os.path.join(output_path, pre + comp + ext) sol[-1].writefits(fname)
import numpy as np import csh import tamasis # define data set datadir = os.path.join(tamasis.tamasis_dir, 'tests',) filenames = os.path.join(datadir, 'frames_blue.fits[0:16]') # no compression # compression modes compressions = ["",] # median filter length filtering = True filter_length = 10000 hypers = (1e15, 1e15) ext = ".fits" pre = "ngc6946_rls_cov_" # to store results models = [] # to output only the model !!! model_only = True for comp in compressions: models.append(csh.rls(filenames, compression=comp, hypers=hypers, deglitch=False, filtering=filtering, filter_length=filter_length, model_only=model_only )) for model in models: M = model.todense() MT = model.T.todense() assert np.all(M.T == MT)