Esempio n. 1
0
def solve_doppelblock(n, clue_row, clue_column):
    solver = Solver()
    answer = solver.int_array((n, n), 0, n - 2)
    solver.add_answer_key(answer)

    def sequence_constraint(cells, v):
        s = 0
        for i in range(n):
            s += (fold_or(cells[:i] == 0) & fold_or(cells[i+1:] == 0)).cond(cells[i], 0)
        return s == v

    def occurrence_constraint(cells):
        solver.ensure(count_true(cells == 0) == 2)
        for i in range(1, n - 1):
            solver.ensure(count_true(cells == i) == 1)

    for i in range(n):
        occurrence_constraint(answer[i, :])
        occurrence_constraint(answer[:, i])
        if clue_row[i] >= 0:
            solver.ensure(sequence_constraint(answer[i, :], clue_row[i]))
        if clue_column[i] >= 0:
            solver.ensure(sequence_constraint(answer[:, i], clue_column[i]))

    is_sat = solver.solve()
    return is_sat, answer
Esempio n. 2
0
def solve_gokigen(height, width, problem):
    solver = Solver()
    edge_type = solver.bool_array((height, width))  # false: /, true: \
    solver.add_answer_key(edge_type)

    g = graph.Graph((height + 1) * (width + 1))
    edge_list = []
    for y in range(height):
        for x in range(width):
            g.add_edge(y * (width + 1) + x, (y + 1) * (width + 1) + (x + 1))
            edge_list.append(edge_type[y, x])
            g.add_edge(y * (width + 1) + (x + 1), (y + 1) * (width + 1) + x)
            edge_list.append(~edge_type[y, x])
    graph.active_edges_acyclic(solver, Array(edge_list), g)

    for y in range(height + 1):
        for x in range(width + 1):
            if problem[y][x] >= 0:
                related = []
                if 0 < y and 0 < x:
                    related.append(edge_type[y - 1, x - 1])
                if 0 < y and x < width:
                    related.append(~edge_type[y - 1, x])
                if y < height and 0 < x:
                    related.append(~edge_type[y, x - 1])
                if y < height and x < width:
                    related.append(edge_type[y, x])
                solver.ensure(count_true(related) == problem[y][x])

    is_sat = solver.solve()
    return is_sat, edge_type
Esempio n. 3
0
def solve_fillomino(height,
                    width,
                    problem,
                    checkered=False,
                    is_non_con=False,
                    is_anti_knight=False):
    solver = Solver()
    size = solver.int_array((height, width), 1, height * width)
    solver.add_answer_key(size)
    group_id = graph.division_connected_variable_groups(solver,
                                                        group_size=size)
    solver.ensure(
        (group_id[:, :-1] == group_id[:, 1:]) == (size[:, :-1] == size[:, 1:]))
    solver.ensure(
        (group_id[:-1, :] == group_id[1:, :]) == (size[:-1, :] == size[1:, :]))
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 1:
                solver.ensure(size[y, x] == problem[y][x])
    if checkered:
        color = solver.bool_array((height, width))
        solver.ensure(
            (group_id[:, :-1] == group_id[:,
                                          1:]) == (color[:, :-1] == color[:,
                                                                          1:]))
        solver.ensure((group_id[:-1, :] == group_id[1:, :]) == (
            color[:-1, :] == color[1:, :]))
    if is_non_con:
        graph.numbers_non_consecutive(solver, size)
    if is_anti_knight:
        graph.numbers_anti_knight(solver, size)
    is_sat = solver.solve()
    return is_sat, size
Esempio n. 4
0
def generate_latin_square(size, is_anti_knight=False):
    solver = Solver()
    latin_array = solver.int_array((size, size), 1, size)

    line = random.sample(range(1, size + 1), size)
    row = random.randrange(size)

    for i in range(size):
        solver.ensure(latin_array[row, i] == line[i])
        solver.ensure(alldifferent(latin_array[i, :]))
        solver.ensure(alldifferent(latin_array[:, i]))

    if is_anti_knight:
        graph.numbers_anti_knight(solver, latin_array)

    solver.find_answer()

    latin = [[0 for _ in range(size)] for _ in range(size)]
    for y in range(size):
        for x in range(size):
            latin[x][y] = latin_array[y, x].sol

    if is_anti_knight:
        return latin

    for i in range(3):
        lines = random.sample(range(size), 2)
        latin = _swap_latin_square_row(size, latin, lines[0], lines[1])
        lines = random.sample(range(size), 2)
        latin = _swap_latin_square_column(size, latin, lines[0], lines[1])

    return latin
Esempio n. 5
0
def solve_ripple(height, width, problem):
    solver = Solver()
    numbers = solver.int_array((height, width), 1, height * width + 1)
    solver.add_answer_key(numbers)

    block_num = max(sum(problem[0:height], [])) + 1
    blocks = [[] for _ in range(block_num)]
    for y in range(height):
        for x in range(width):
            blocks[problem[y][x]].append([y, x])
            if problem[y + height][x] > 0:
                solver.ensure(numbers[y, x] == problem[y + height][x])

    for block in blocks:
        solver.ensure(alldifferent([numbers[y, x] for y, x in block]))
        for y, x in block:
            solver.ensure(numbers[y, x] <= len(block))

    for y in range(height):
        for x in range(width):
            for i in range(1, width - x):
                solver.ensure(
                    (numbers[y, x] == numbers[y,
                                              x + i]).then(numbers[y, x] < i))
            for i in range(1, height - y):
                solver.ensure(
                    (numbers[y, x] == numbers[y + i,
                                              x]).then(numbers[y, x] < i))

    is_sat = solver.solve()
    return is_sat, numbers
Esempio n. 6
0
def solve_building(n, u, d, l, r):
    solver = Solver()
    answer = solver.int_array((n, n), 1, n)
    solver.add_answer_key(answer)

    for i in range(n):
        solver.ensure(alldifferent(answer[i, :]))
        solver.ensure(alldifferent(answer[:, i]))

    def num_visible_buildings(cells):
        cells = list(cells)
        res = 1
        for i in range(1, len(cells)):
            res += fold_and([cells[j] < cells[i] for j in range(i)]).cond(1, 0)
        return res

    for i in range(n):
        if u[i] >= 1:
            solver.ensure(num_visible_buildings(answer[:, i]) == u[i])
        if d[i] >= 1:
            solver.ensure(
                num_visible_buildings(reversed(list(answer[:, i]))) == d[i])
        if l[i] >= 1:
            solver.ensure(num_visible_buildings(answer[i, :]) == l[i])
        if r[i] >= 1:
            solver.ensure(
                num_visible_buildings(reversed(list(answer[i, :]))) == r[i])

    is_sat = solver.solve()
    return is_sat, answer
Esempio n. 7
0
def solve_fivecells(height, width, problem):
    vertex_id = [[-1 for _ in range(width)] for _ in range(height)]
    id_last = 0
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= -1:
                vertex_id[y][x] = id_last
                id_last += 1
    g = graph.Graph(id_last)
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= -1:
                if y < height - 1 and problem[y + 1][x] >= -1:
                    g.add_edge(vertex_id[y][x], vertex_id[y + 1][x])
                if x < width - 1 and problem[y][x + 1] >= -1:
                    g.add_edge(vertex_id[y][x], vertex_id[y][x + 1])
    solver = Solver()
    group_id = graph.division_connected_variable_groups(solver,
                                                        graph=g,
                                                        group_size=5)
    is_invalid = False
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 0:
                borders = []
                if y > 0 and problem[y - 1][x] >= -1:
                    borders.append(
                        group_id[vertex_id[y][x]] != group_id[vertex_id[y -
                                                                        1][x]])
                if y < height - 1 and problem[y + 1][x] >= -1:
                    borders.append(
                        group_id[vertex_id[y][x]] != group_id[vertex_id[y +
                                                                        1][x]])
                if x > 0 and problem[y][x - 1] >= -1:
                    borders.append(
                        group_id[vertex_id[y][x]] != group_id[vertex_id[y][x -
                                                                           1]])
                if x < width - 1 and problem[y][x + 1] >= -1:
                    borders.append(
                        group_id[vertex_id[y][x]] != group_id[vertex_id[y][x +
                                                                           1]])
                always_border = 4 - len(borders)
                solver.ensure(
                    count_true(borders) == problem[y][x] - always_border)
                if problem[y][x] - always_border < 0:
                    is_invalid = True

    is_border = solver.bool_array(len(g))
    for i, (u, v) in enumerate(g):
        solver.ensure(is_border[i] == (group_id[u] != group_id[v]))
    solver.add_answer_key(is_border)

    if is_invalid:
        is_sat = False
    else:
        is_sat = solver.solve()
    return is_sat, is_border
Esempio n. 8
0
def solve_slitherlink(height, width, problem):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height, width)
    solver.add_answer_key(grid_frame)
    graph.active_edges_single_cycle(solver, grid_frame)
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 0:
                solver.ensure(
                    count_true(grid_frame.cell_neighbors(y, x)) == problem[y]
                    [x])
    is_sat = solver.solve()
    return is_sat, grid_frame
Esempio n. 9
0
def solve_creek(height, width, problem):
    solver = Solver()
    is_white = solver.bool_array((height, width))
    solver.add_answer_key(is_white)
    graph.active_vertices_connected(solver, is_white)
    for y in range(0, height + 1):
        for x in range(0, width + 1):
            if problem[y][x] >= 0:
                solver.ensure(
                    count_true(~is_white[max(y - 1, 0):min(y + 1, height),
                                         max(x - 1, 0):min(x + 1, width)]) ==
                    problem[y][x])
    is_sat = solver.solve()
    return is_sat, is_white
Esempio n. 10
0
def solve_putteria(height, width, blocks):
    solver = Solver()
    has_number = solver.bool_array((height, width))
    solver.add_answer_key(has_number)

    solver.ensure((~has_number[:, :-1]) | (~has_number[:, 1:]))
    solver.ensure((~has_number[:-1, :]) | (~has_number[1:, :]))
    for block in blocks:
        solver.ensure(count_true([has_number[y, x] for y, x in block]) == 1)

    block_size = [[0 for _ in range(width)] for _ in range(height)]
    for block in blocks:
        for y, x in block:
            block_size[y][x] = len(block)
    for y in range(height):
        for x1 in range(width):
            for x2 in range(x1 + 1, width):
                if block_size[y][x1] == block_size[y][x2]:
                    solver.ensure(~(has_number[y, x1] & has_number[y, x2]))
    for x in range(width):
        for y1 in range(height):
            for y2 in range(y1 + 1, height):
                if block_size[y1][x] == block_size[y2][x]:
                    solver.ensure(~(has_number[y1, x] & has_number[y2, x]))

    is_sat = solver.solve()
    return is_sat, has_number
Esempio n. 11
0
def solve_norinori(height, width, blocks):
    solver = Solver()
    is_black = solver.bool_array((height, width))
    solver.add_answer_key(is_black)

    for y in range(height):
        for x in range(width):
            solver.ensure(is_black[y, x].then(
                count_true(is_black.four_neighbors(y, x)) == 1))

    for block in blocks:
        solver.ensure(count_true(map(lambda p: is_black[p], block)) == 2)

    is_sat = solver.solve()
    return is_sat, is_black
Esempio n. 12
0
def solve_darts(target, darts, board):
    solver = Solver()
    is_dart = solver.bool_array(len(board))
    solver.add_answer_key(is_dart)

    solver.ensure(count_true(is_dart) == darts)

    def _sum(d, b):
        sums = 0
        for i in range(len(board)):
            sums += d[i].cond(b[i], 0)
        return sums

    solver.ensure(_sum(is_dart, board) == target)

    is_sat = solver.solve()
    return is_sat, is_dart
Esempio n. 13
0
def solve_koutano(height, width, problem):
    solver = Solver()
    col = solver.int_array(width, 0, width - 1)
    row = solver.int_array(height, 0, height - 1)

    solver.add_answer_key(col)
    solver.add_answer_key(row)

    solver.ensure(alldifferent(col))
    solver.ensure(alldifferent(row))

    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 0:
                solver.ensure(col[x] + row[y] == problem[y][x])

    is_sat = solver.solve()
    return is_sat, col, row
Esempio n. 14
0
def solve_compass(height, width, problem):
    solver = Solver()
    roots = map(lambda x: (x[0], x[1]), problem)
    division = solver.int_array((height, width), 0, len(problem) - 1)
    graph.division_connected(solver, division, len(problem), roots=roots)
    solver.add_answer_key(division)
    for i, (y, x, u, l, d, r) in enumerate(problem):
        solver.ensure(division[y, x] == i)
        if u >= 0:
            solver.ensure(count_true(division[:y, :] == i) == u)
        if d >= 0:
            solver.ensure(count_true(division[(y + 1):, :] == i) == d)
        if l >= 0:
            solver.ensure(count_true(division[:, :x] == i) == l)
        if r >= 0:
            solver.ensure(count_true(division[:, (x + 1):] == i) == r)
    is_sat = solver.solve()

    return is_sat, division
Esempio n. 15
0
def solve_simpleloop(height, width, blocked, pivot):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    is_passed = graph.active_edges_single_cycle(solver, grid_frame)

    for y in range(height):
        for x in range(width):
            if (y, x) != pivot:
                solver.ensure(is_passed[y, x] == (blocked[y][x] == 0))

    py, px = pivot
    n_pass = 0
    for y in range(height):
        for x in range(width):
            if (y, x) != pivot and blocked[y][x] == 0:
                n_pass += 1
    solver.ensure(is_passed[py, px] == (n_pass % 2 == 1))
    is_sat = solver.solve()
    return is_sat, grid_frame
Esempio n. 16
0
def solve_geradeweg(height, width, problem):
    def line_length(edges):
        edges = list(edges)
        if len(edges) == 0:
            return 0
        ret = edges[-1].cond(1, 0)
        for i in range(len(edges) - 2, -1, -1):
            ret = edges[i].cond(1 + ret, 0)
        return ret

    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    is_passed = graph.active_edges_single_cycle(solver, grid_frame)

    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 1:
                solver.ensure(is_passed[y, x])
                solver.ensure(fold_or(([grid_frame.horizontal[y, x - 1]] if x > 0 else []) + ([grid_frame.horizontal[y, x]] if x < width - 1 else [])).then(
                    line_length(reversed(list(grid_frame.horizontal[y, :x]))) + line_length(grid_frame.horizontal[y, x:]) == problem[y][x]
                ))
                solver.ensure(fold_or(([grid_frame.vertical[y - 1, x]] if y > 0 else []) + ([grid_frame.vertical[y, x]] if y < height - 1 else [])).then(
                    line_length(reversed(list(grid_frame.vertical[:y, x]))) + line_length(grid_frame.vertical[y:, x]) == problem[y][x]
                ))

    is_sat = solver.solve()
    return is_sat, grid_frame
Esempio n. 17
0
def solve_masyu(height, width, problem):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    graph.active_edges_single_cycle(solver, grid_frame)

    def get_edge(y, x, neg=False):
        if 0 <= y <= 2 * (height - 1) and 0 <= x <= 2 * (width - 1):
            if y % 2 == 0:
                r = grid_frame.horizontal[y // 2][x // 2]
            else:
                r = grid_frame.vertical[y // 2][x // 2]
            if neg:
                return ~r
            else:
                return r
        else:
            return neg

    for y in range(height):
        for x in range(width):
            if problem[y][x] == 1:
                solver.ensure(
                    (get_edge(y * 2, x * 2 - 1) & get_edge(y * 2, x * 2 + 1)
                     & (get_edge(y * 2, x * 2 - 3, True)
                        | get_edge(y * 2, x * 2 + 3, True)))
                    | (get_edge(y * 2 - 1, x * 2) & get_edge(y * 2 + 1, x * 2)
                       & (get_edge(y * 2 - 3, x * 2, True)
                          | get_edge(y * 2 + 3, x * 2, True))))
            elif problem[y][x] == 2:
                dirs = [
                    get_edge(y * 2, x * 2 - 1) & get_edge(y * 2, x * 2 - 3),
                    get_edge(y * 2 - 1, x * 2) & get_edge(y * 2 - 3, x * 2),
                    get_edge(y * 2, x * 2 + 1) & get_edge(y * 2, x * 2 + 3),
                    get_edge(y * 2 + 1, x * 2) & get_edge(y * 2 + 3, x * 2),
                ]
                solver.ensure((dirs[0] | dirs[2]) & (dirs[1] | dirs[3]))

    is_sat = solver.solve()
    return is_sat, grid_frame
Esempio n. 18
0
def solve_simplegako(height, width, problem):
    solver = Solver()
    numbers = solver.int_array((height, width), 1, height + width - 1)
    solver.add_answer_key(numbers)

    for y in range(height):
        for x in range(width):
            if problem[y][x] > 0:
                solver.ensure(numbers[y, x] == problem[y][x])

    def _count(y0, x0, n):
        sum = -1
        for y in range(height):
            sum += (numbers[y, x0] == n).cond(1, 0)
        for x in range(width):
            sum += (numbers[y0, x] == n).cond(1, 0)
        return sum

    for y in range(height):
        for x in range(width):
            solver.ensure(numbers[y, x] == _count(y, x, numbers[y, x]))

    is_sat = solver.solve()
    return is_sat, numbers
Esempio n. 19
0
def solve_star_battle(n, blocks, k, is_anti_knight=False):
    if not isinstance(blocks, Array):
        blocks = Array(blocks)
    solver = Solver()
    has_star = solver.bool_array((n, n))
    solver.add_answer_key(has_star)
    for i in range(n):
        solver.ensure(sum(has_star[i, :].cond(1, 0)) == k)
        solver.ensure(sum(has_star[:, i].cond(1, 0)) == k)
    solver.ensure(~(has_star[:-1, :] & has_star[1:, :]))
    solver.ensure(~(has_star[:, :-1] & has_star[:, 1:]))
    solver.ensure(~(has_star[:-1, :-1] & has_star[1:, 1:]))
    solver.ensure(~(has_star[:-1, 1:] & has_star[1:, :-1]))
    for i in range(n):
        solver.ensure(sum((has_star & (blocks == i)).cond(1, 0)) == k)

    if is_anti_knight:
        graph.active_vertices_anti_knight(solver, has_star)
    is_sat = solver.solve()
    return is_sat, has_star
Esempio n. 20
0
def solve_sudoku(problem,
                 n=3,
                 is_non_con=False,
                 is_anti_knight=False,
                 is_non_dicon=False,
                 is_anti_alfil=False):
    size = n * n
    solver = Solver()
    answer = solver.int_array((size, size), 1, size)
    solver.add_answer_key(answer)
    for i in range(size):
        solver.ensure(alldifferent(answer[i, :]))
        solver.ensure(alldifferent(answer[:, i]))
    for y in range(n):
        for x in range(n):
            solver.ensure(
                alldifferent(answer[y * n:(y + 1) * n, x * n:(x + 1) * n]))
    for y in range(size):
        for x in range(size):
            if problem[y][x] >= 1:
                solver.ensure(answer[y, x] == problem[y][x])

    if is_non_con:
        graph.numbers_non_consecutive(solver, answer)

    if is_anti_knight:
        graph.numbers_anti_knight(solver, answer)

    if is_non_dicon:
        graph.numbers_non_diagonally_consecutive(solver, answer)

    if is_anti_alfil:
        graph.numbers_anti_alfil(solver, answer)

    is_sat = solver.solve()

    return is_sat, answer
Esempio n. 21
0
def solve_lits(height, width, blocks):
    solver = Solver()
    is_black = solver.bool_array((height, width))
    solver.add_answer_key(is_black)

    # black cells are connected
    graph.active_vertices_connected(solver, is_black)

    # no 2x2 black cells
    solver.ensure(~(is_black[1:, 1:] & is_black[1:, :-1] & is_black[:-1, 1:] & is_black[:-1, :-1]))

    block_id = [[-1 for _ in range(width)] for _ in range(height)]
    for i, block in enumerate(blocks):
        for y, x in block:
            block_id[y][x] = i

    num_straight = solver.int_array(len(blocks), 0, 2)
    has_t = solver.bool_array(len(blocks))

    for i in range(len(blocks)):
        solver.ensure(count_true([is_black[p] for p in blocks[i]]) == 4)
        adjacent_pairs = []
        is_straight = []
        is_t = []
        for y, x in blocks[i]:
            neighbor_same_block = []
            for y2, x2 in is_black.four_neighbor_indices(y, x):
                if block_id[y2][x2] == i:
                    neighbor_same_block.append((y2, x2))
                    if (y, x) < (y2, x2):
                        adjacent_pairs.append(is_black[y, x] & is_black[y2, x2])
            solver.ensure(is_black[y, x].then(fold_or([is_black[p] for p in neighbor_same_block])))

            tmp = []
            if 0 < y < height - 1 and block_id[y - 1][x] == i and block_id[y + 1][x] == i:
                tmp.append(fold_and(is_black[y-1:y+2, x]))
            if 0 < x < width - 1 and block_id[y][x - 1] == i and block_id[y][x + 1] == i:
                tmp.append(fold_and(is_black[y, x-1:x+2]))
            if len(tmp) >= 1:
                is_straight.append(fold_or(tmp))

            if len(neighbor_same_block) >= 3:
                is_t.append(count_true([is_black[p] for p in neighbor_same_block]) >= 3)
        solver.ensure(count_true(adjacent_pairs) == 3)

        solver.ensure(num_straight[i] == count_true(is_straight))
        solver.ensure(has_t[i] == fold_or(is_t))

    for y in range(height):
        for x in range(width):
            if y < height - 1 and block_id[y][x] != block_id[y + 1][x]:
                i = block_id[y][x]
                j = block_id[y + 1][x]
                solver.ensure((is_black[y, x] & is_black[y + 1, x]).then(
                    (num_straight[i] != num_straight[j]) | (has_t[i] != has_t[j])
                ))
            if x < width - 1 and block_id[y][x] != block_id[y][x + 1]:
                i = block_id[y][x]
                j = block_id[y][x + 1]
                solver.ensure((is_black[y, x] & is_black[y, x + 1]).then(
                    (num_straight[i] != num_straight[j]) | (has_t[i] != has_t[j])
                ))
    is_sat = solver.solve()
    return is_sat, is_black
Esempio n. 22
0
def solve_slalom(height,
                 width,
                 origin,
                 is_black,
                 gates,
                 reference_sol_loop=None):
    solver = Solver()
    loop = BoolGridFrame(solver, height - 1, width - 1)
    loop_dir = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(loop.all_edges())

    graph.active_edges_single_cycle(solver, loop)

    gate_ord = solver.int_array((height, width), 0, len(gates))
    passed = solver.bool_array((height, width))

    gate_id = [[None for _ in range(width)] for _ in range(height)]
    for y, x, d, l, n in gates:
        if d == 0:  # horizontal
            gate_cells = [(y, x + i) for i in range(l)]
        elif d == 1:  # vertical
            gate_cells = [(y + i, x) for i in range(l)]
        for y2, x2 in gate_cells:
            gate_id[y2][x2] = n
        solver.ensure(
            count_true([passed[y2, x2] for y2, x2 in gate_cells]) == 1)
    solver.ensure(passed[origin])
    for y in range(height):
        for x in range(width):
            neighbors = []
            if y > 0:
                neighbors.append((y - 1, x))
            if y < height - 1:
                neighbors.append((y + 1, x))
            if x > 0:
                neighbors.append((y, x - 1))
            if x < width - 1:
                neighbors.append((y, x + 1))

            # in-degree, out-degree
            solver.ensure(
                count_true([
                    loop[y + y2, x + x2]
                    & (loop_dir[y + y2, x + x2] != ((y2, x2) < (y, x)))
                    for y2, x2 in neighbors
                ]) == passed[y, x].cond(1, 0))
            solver.ensure(
                count_true([
                    loop[y + y2, x + x2]
                    & (loop_dir[y + y2, x + x2] == ((y2, x2) < (y, x)))
                    for y2, x2 in neighbors
                ]) == passed[y, x].cond(1, 0))

            if is_black[y][x]:
                solver.ensure(~passed[y, x])
                continue
            if (y, x) == origin:
                continue
            if gate_id[y][x] is None:
                for y2, x2 in neighbors:
                    solver.ensure((loop[y + y2, x + x2] &
                                   (loop_dir[y + y2, x + x2] !=
                                    ((y2, x2) < (y, x)))).then(
                                        (gate_ord[y2, x2] == gate_ord[y, x])))
            else:
                for y2, x2 in neighbors:
                    solver.ensure((loop[y + y2, x + x2] &
                                   (loop_dir[y + y2, x + x2] !=
                                    ((y2, x2) < (y, x)))).then(
                                        (gate_ord[y2,
                                                  x2] == gate_ord[y, x] - 1)))
                if gate_id[y][x] >= 1:
                    solver.ensure(passed[y,
                                         x].then(gate_ord[y,
                                                          x] == gate_id[y][x]))

    # auxiliary constraint
    for y0 in range(height):
        for x0 in range(width):
            for y1 in range(height):
                for x1 in range(width):
                    if (y0, x0) < (y1, x1) and gate_id[y0][
                            x0] is not None and gate_id[y1][x1] is not None:
                        solver.ensure((passed[y0, x0] & passed[y1, x1]).then(
                            gate_ord[y0, x0] != gate_ord[y1, x1]))

    if reference_sol_loop is not None:
        avoid_reference_sol = []
        for y in range(height):
            for x in range(width):
                if y < height - 1:
                    avoid_reference_sol.append(
                        loop.vertical[y,
                                      x] != reference_sol_loop.vertical[y,
                                                                        x].sol)
                if x < width - 1:
                    avoid_reference_sol.append(loop.horizontal[
                        y, x] != reference_sol_loop.horizontal[y, x].sol)
        solver.ensure(fold_or(avoid_reference_sol))

        is_sat = solver.find_answer()
        return is_sat, loop
    else:
        is_sat = solver.solve()
        return is_sat, loop
Esempio n. 23
0
def generate_slalom_initial_placement(height,
                                      width,
                                      n_min_gates=None,
                                      n_max_gates=None,
                                      n_max_isolated_black_cells=None,
                                      no_adjacent_black_cell=False,
                                      no_facing_length_two=False,
                                      no_space_2x2=False,
                                      black_cell_in_every_3x3=False,
                                      min_go_through=0):
    solver = Solver()
    loop = BoolGridFrame(solver, height - 1, width - 1)
    is_black = solver.bool_array((height, width))
    is_horizontal = solver.bool_array((height, width))
    is_vertical = solver.bool_array((height, width))

    solver.ensure(~(is_black & is_horizontal))
    solver.ensure(~(is_black & is_vertical))
    solver.ensure(~(is_horizontal & is_vertical))
    solver.ensure(~(is_horizontal[0, :]))
    solver.ensure(~(is_horizontal[-1, :]))
    solver.ensure(~(is_vertical[:, 0]))
    solver.ensure(~(is_vertical[:, -1]))

    is_passed = graph.active_edges_single_cycle(solver, loop)

    # --------- board must be valid as a problem ---------

    # loop constraints
    for y in range(height):
        for x in range(width):
            if y > 0:
                solver.ensure(is_black[y, x].then(~loop.vertical[y - 1, x]))
                solver.ensure(is_vertical[y, x].then(~loop.vertical[y - 1, x]))
            if y < height - 1:
                solver.ensure(is_black[y, x].then(~loop.vertical[y, x]))
                solver.ensure(is_vertical[y, x].then(~loop.vertical[y, x]))
            if x > 0:
                solver.ensure(is_black[y, x].then(~loop.horizontal[y, x - 1]))
                solver.ensure(
                    is_horizontal[y, x].then(~loop.horizontal[y, x - 1]))
            if x < width - 1:
                solver.ensure(is_black[y, x].then(~loop.horizontal[y, x]))
                solver.ensure(is_horizontal[y, x].then(~loop.horizontal[y, x]))

    # gates must be closed
    solver.ensure(is_vertical[1:, :].then(is_vertical[:-1, :]
                                          | is_black[:-1, :]))
    solver.ensure(is_vertical[:-1, :].then(is_vertical[1:, :]
                                           | is_black[1:, :]))
    solver.ensure(is_horizontal[:, 1:].then(is_horizontal[:, :-1]
                                            | is_black[:, :-1]))
    solver.ensure(is_horizontal[:, :-1].then(is_horizontal[:, 1:]
                                             | is_black[:, 1:]))
    # each horizontal gate must be passed exactly once
    for y in range(1, height - 1):
        for x in range(width):
            on_loop = []
            for x2 in range(width):
                cond = [is_passed[y, x2]]
                if x2 < x:
                    cond += [is_horizontal[y, i] for i in range(x2, x)]
                elif x < x2:
                    cond += [is_horizontal[y, i] for i in range(x + 1, x2 + 1)]
                on_loop.append(fold_and(cond))
            solver.ensure(is_horizontal[y, x].then(count_true(on_loop) == 1))
    # each vertical gate must be passed exactly once
    for y in range(height):
        for x in range(1, width - 1):
            on_loop = []
            for y2 in range(width):
                cond = [is_passed[y2, x]]
                if y2 < y:
                    cond += [is_vertical[i, x] for i in range(y2, y)]
                elif y < y2:
                    cond += [is_vertical[i, x] for i in range(y + 1, y2 + 1)]
                on_loop.append(fold_and(cond))
            solver.ensure(is_vertical[y, x].then(count_true(on_loop) == 1))

    # --------- loop must be canonical ---------

    # for simplicity, no stacked gates (although this is not necessary for the canonicity)
    solver.ensure(~(is_horizontal[:-1, :] & is_horizontal[1:, :]))
    solver.ensure(~(is_vertical[:, :-1] & is_vertical[:, 1:]))
    for y in range(height):
        for x in range(width):
            if 0 < y < height - 1:
                if x == 0 or x == width - 1:
                    solver.ensure(is_horizontal[y,
                                                x].then(~is_black[y - 1, x]
                                                        & ~is_black[y + 1, x]))
                else:
                    solver.ensure((is_horizontal[y, x] &
                                   (is_black[y - 1, x] | is_black[y + 1, x])
                                   ).then(is_horizontal[y, x - 1]
                                          & is_horizontal[y, x + 1]
                                          & ~is_black[y - 1, x - 1]
                                          & ~is_black[y + 1, x - 1]
                                          & ~is_black[y + 1, x - 1]
                                          & ~is_black[y + 1, x + 1]))
            if 0 < x < width - 1:
                if y == 0 or y == height - 1:
                    solver.ensure(is_vertical[y,
                                              x].then(~is_black[y, x - 1]
                                                      & ~is_black[y, x + 1]))
                else:
                    solver.ensure(
                        (is_vertical[y, x] &
                         (is_black[y, x - 1] | is_black[y, x + 1])
                         ).then(is_vertical[y - 1, x] & is_vertical[y + 1, x]
                                & ~is_black[y - 1, x - 1]
                                & ~is_black[y + 1, x - 1]
                                & ~is_black[y + 1, x - 1]
                                & ~is_black[y + 1, x + 1]))

    # no detour
    for y in range(height - 1):
        for x in range(width - 1):
            solver.ensure(count_true(loop.cell_neighbors(y, x)) <= 2)
            solver.ensure(
                fold_and(~is_black[y:y + 2, x:x + 2],
                         ~is_horizontal[y:y + 2, x:x + 2],
                         ~is_vertical[y:y + 2, x:x + 2]).then(
                             count_true(loop.cell_neighbors(y, x)) +
                             1 < count_true(is_passed[y:y + 2, x:x + 2])))

    # no ambiguous L-shaped turning
    for y in range(height - 1):
        for x in range(width - 1):
            for dy in [0, 1]:
                for dx in [0, 1]:
                    solver.ensure(~fold_and([
                        loop.horizontal[y + dy, x], loop.vertical[
                            y, x + dx], ~is_vertical[y + dy, x + 1 - dx],
                        ~is_horizontal[y + 1 - dx, x +
                                       dx], ~is_black[y + 1 - dy, x + 1 - dx],
                        count_true(is_passed[y:y + 2, x:x + 2]) == 3
                    ]))

    # no ambiguous L-shaped turning involving gates
    for y in range(height - 1):
        for x in range(width - 2):
            solver.ensure(
                fold_and(
                    is_vertical[y:y + 2, x + 1],
                    ~is_black[y:y + 2, x:x + 3]).then(
                        count_true(loop.horizontal[y, x], loop.horizontal[
                            y + 1,
                            x], loop.vertical[y, x], loop.vertical[y, x + 2]) +
                        1 < count_true(is_passed[y:y + 2,
                                                 x], is_passed[y:y + 2,
                                                               x + 2])))
    for y in range(height - 2):
        for x in range(width - 1):
            solver.ensure(
                fold_and(is_horizontal[y + 1, x:x + 2],
                         ~is_black[y:y + 3, x:x + 2]).
                then(
                    count_true(loop.vertical[y, x], loop.vertical[y, x + 1],
                               loop.horizontal[y, x], loop.horizontal[y + 2,
                                                                      x]) +
                    1 < count_true(is_passed[y, x:x + 2], is_passed[y + 2,
                                                                    x:x + 2])))

    # no dead ends
    for y in range(height):
        for x in range(width):
            solver.ensure((~is_black[y, x]).then(
                count_true(~is_black.four_neighbors(y, x)) >= 2))

    # --------- avoid "trivial" problems ---------
    solver.ensure(count_true(is_vertical) > 5)
    solver.ensure(count_true(is_horizontal) > 4)

    if n_max_isolated_black_cells is not None:
        lonely_black_cell = []
        for y in range(height):
            for x in range(width):
                cond = [is_black[y, x]]
                if y > 0:
                    cond.append(~is_vertical[y - 1, x])
                if y < height - 1:
                    cond.append(~is_vertical[y + 1, x])
                if x > 0:
                    cond.append(~is_horizontal[y, x - 1])
                if x < width - 1:
                    cond.append(~is_horizontal[y, x + 1])
                lonely_black_cell.append(fold_and(cond))
        solver.ensure(
            count_true(lonely_black_cell) <= n_max_isolated_black_cells)

    short_gates = []
    for y in range(height):
        for x in range(width):
            g1 = fold_and([
                is_vertical[y, x], ~is_vertical[y - 1, x] if y > 0 else True,
                ~is_vertical[y + 1, x] if y < height - 1 else True
            ])
            g2 = fold_and([
                is_horizontal[y,
                              x], ~is_horizontal[y, x - 1] if x > 0 else True,
                ~is_horizontal[y, x + 1] if x < width - 1 else True
            ])
            if 0 < y < height - 1 and 0 < x < width - 1:
                short_gates.append(g1)
                short_gates.append(g2)
                solver.ensure((g1 | g2).then(~is_black[y - 1, x - 1]
                                             & ~is_black[y - 1, x + 1]
                                             & ~is_black[y + 1, x - 1]
                                             & ~is_black[y + 1, x + 1]))
            else:
                solver.ensure(~g1)
                solver.ensure(~g2)
    solver.ensure(count_true(short_gates) <= 0)
    for y in range(1, height - 1):
        for x in range(1, width - 1):
            solver.ensure(
                count_true(
                    is_horizontal[y - 1, x] & is_black[y - 1, x - 1]
                    & is_black[y - 1, x + 1],
                    is_horizontal[y + 1, x] & is_black[y + 1, x - 1]
                    & is_black[y + 1, x + 1],
                    is_vertical[y, x - 1] & is_black[y - 1, x - 1]
                    & is_black[y + 1, x - 1],
                    is_vertical[y, x + 1] & is_black[y - 1, x + 1]
                    & is_black[y + 1, x + 1],
                ) <= 1)
    # --------- ensure randomness ---------

    passed_constraints = [[0 for _ in range(width)] for _ in range(height)]
    for y in range(height):
        for x in range(width):
            if (y > 0 and passed_constraints[y - 1][x] != 0) or (
                    x > 0 and passed_constraints[y][x - 1] != 0):
                continue
            passed_constraints[y][x] = max(0, random.randint(-20, 2))
    for y in range(height):
        for x in range(width):
            if passed_constraints[y][x] == 1:
                solver.ensure(is_passed[y, x])
            elif passed_constraints[y][x] == 2:
                solver.ensure(~is_passed[y, x])

    # --------- extra constraints ---------
    if n_min_gates is not None or n_max_gates is not None:
        gate_representative = []
        for y in range(height):
            for x in range(width):
                gate_representative.append(is_horizontal[y, x] & (
                    ~is_horizontal[y, x - 1] if x > 0 else True))
                gate_representative.append(is_vertical[y, x] & (
                    ~is_vertical[y - 1, x] if y > 0 else True))
        if n_min_gates is not None:
            solver.ensure(n_min_gates <= count_true(gate_representative))
        if n_max_gates is not None:
            solver.ensure(count_true(gate_representative) <= n_max_gates)

    if min_go_through > 0:
        go_through = []
        for y in range(height):
            for x in range(width):
                if y < height - 4 and 0 < x < width - 1:
                    go_through.append(
                        fold_and(
                            is_horizontal[y + 1,
                                          x], is_horizontal[y + 1, x - 1]
                            | is_horizontal[y + 1, x + 1],
                            ~is_black[y + 2, x - 1], ~is_black[y + 2, x + 1],
                            is_horizontal[y + 3,
                                          x], is_horizontal[y + 3, x - 1]
                            | is_horizontal[y + 3, x + 1],
                            loop.vertical[y:y + 4, x]))
                if x < width - 4 and 0 < y < height - 1:
                    go_through.append(
                        fold_and(
                            is_vertical[y, x + 1], is_vertical[y - 1, x + 1]
                            | is_vertical[y + 1, x + 1],
                            ~is_black[y - 1, x + 2], ~is_black[y + 1, x + 2],
                            is_vertical[y, x + 3], is_vertical[y - 1, x + 3]
                            | is_vertical[y + 1, x + 3],
                            loop.horizontal[y, x:x + 4]))
        solver.ensure(count_true(go_through) >= 2)

    if no_adjacent_black_cell:
        solver.ensure(~(is_black[:-1, :] & is_black[1:, :]))
        solver.ensure(~(is_black[:, :-1] & is_black[:, 1:]))
        solver.ensure(~(is_black[:-1, :-1] & is_black[1:, 1:]))
        solver.ensure(~(is_black[:-1, 1:] & is_black[1:, :-1]))

    if no_facing_length_two:
        for y in range(height):
            for x in range(width):
                if y <= height - 3 and x <= width - 4:
                    solver.ensure(~fold_and(
                        is_black[y, x], is_black[y + 2, x], is_black[y, x + 3],
                        is_black[y + 2, x + 3], is_horizontal[
                            y, x + 1], is_horizontal[y, x + 2], is_horizontal[
                                y + 2, x + 1], is_horizontal[y + 2, x + 2]))
                if y <= height - 4 and x <= width - 3:
                    solver.ensure(
                        ~fold_and(is_black[y, x], is_black[y, x + 2], is_black[
                            y + 3, x], is_black[y + 3, x + 2], is_vertical[
                                y + 1, x], is_vertical[y + 2, x], is_vertical[
                                    y + 1, x + 2], is_vertical[y + 2, x + 2]))

    if no_space_2x2:
        has_some = is_black | is_vertical | is_horizontal
        solver.ensure(has_some[:-1, :-1] | has_some[1:, :-1]
                      | has_some[:-1, 1:] | has_some[1:, 1:])

    if black_cell_in_every_3x3:
        for y in range(-1, height - 2):
            for x in range(-1, width - 2):
                solver.ensure(
                    fold_or(is_black[max(0, y):min(height, y + 3),
                                     max(0, x):min(width, x + 3)]))

    is_sat = solver.find_answer()
    if not is_sat:
        return None
    return loop, is_passed, is_black, is_horizontal, is_vertical
Esempio n. 24
0
def solve_castle_wall(height, width, arrow, inside):
    solver = Solver()
    grid_frame = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(grid_frame)
    passed = graph.active_edges_single_cycle(solver, grid_frame)

    # arrow constraints
    for y in range(height):
        for x in range(width):
            if arrow[y][x] == '..':
                continue
            solver.ensure(~passed[y, x])
            if arrow[y][x][0] == '^':
                related_edges = grid_frame.vertical[:y, x]
            elif arrow[y][x][0] == 'v':
                related_edges = grid_frame.vertical[y:, x]
            elif arrow[y][x][0] == '<':
                related_edges = grid_frame.horizontal[y, :x]
            elif arrow[y][x][0] == '>':
                related_edges = grid_frame.horizontal[y, x:]
            else:
                continue
            solver.ensure(count_true(related_edges) == int(arrow[y][x][1:]))

    # inout constraints
    is_inside = solver.bool_array((height - 1, width - 1))
    for y in range(height - 1):
        for x in range(width - 1):
            if y == 0:
                solver.ensure(is_inside[y, x] == grid_frame[0, x * 2 + 1])
            else:
                solver.ensure(is_inside[y, x] == (
                    is_inside[y - 1, x] != grid_frame[y * 2, x * 2 + 1]))
    for y in range(height):
        for x in range(width):
            if inside[y][x] is True:
                solver.ensure(is_inside[max(0, y - 1), max(0, x - 1)])
            elif inside[y][x] is False:
                solver.ensure(~is_inside[max(0, y - 1), max(0, x - 1)])
    is_sat = solver.solve()

    return is_sat, grid_frame
Esempio n. 25
0
def solve_firefly(height, width, problem):
    solver = Solver()

    has_line = BoolGridFrame(solver, height - 1, width - 1)
    solver.add_answer_key(has_line)

    line_ul = BoolGridFrame(solver, height - 1, width - 1)
    line_dr = BoolGridFrame(solver, height - 1, width - 1)
    solver.ensure(
        Array(list(has_line)) == (Array(list(line_ul)) | Array(list(line_dr))))
    solver.ensure(~(Array(list(line_ul)) & Array(list(line_dr))))

    # unicyclic (= connected)
    ignored_edge = BoolGridFrame(solver, height - 1, width - 1)
    solver.ensure(count_true(ignored_edge) == 1)
    rank = solver.int_array((height, width), 0, height * width - 1)
    solver.ensure(
        (line_ul.horizontal
         & ~ignored_edge.horizontal).then(rank[:, :-1] < rank[:, 1:]))
    solver.ensure((line_ul.vertical
                   & ~ignored_edge.vertical).then(rank[:-1, :] < rank[1:, :]))
    solver.ensure(
        (line_dr.horizontal
         & ~ignored_edge.horizontal).then(rank[:, :-1] > rank[:, 1:]))
    solver.ensure((line_dr.vertical
                   & ~ignored_edge.vertical).then(rank[:-1, :] > rank[1:, :]))

    max_n_turn = 0
    for y in range(height):
        for x in range(width):
            if problem[y][x][0] != '.' and problem[y][x][1] != '?':
                max_n_turn = max(max_n_turn, int(problem[y][x][1:]))
    n_turn_unknown = max_n_turn + 1
    n_turn_horizontal = solver.int_array((height, width - 1), 0,
                                         max_n_turn + 1)
    n_turn_vertical = solver.int_array((height - 1, width), 0, max_n_turn + 1)

    for y in range(height):
        for x in range(width):
            # u, d, l, r
            adj = []  # (line_in, line_out, # turn)

            if y > 0:
                adj.append((line_dr.vertical[y - 1, x],
                            line_ul.vertical[y - 1, x], n_turn_vertical[y - 1,
                                                                        x]))
            else:
                adj.append(None)
            if y < height - 1:
                adj.append((line_ul.vertical[y, x], line_dr.vertical[y, x],
                            n_turn_vertical[y, x]))
            else:
                adj.append(None)
            if x > 0:
                adj.append(
                    (line_dr.horizontal[y, x - 1],
                     line_ul.horizontal[y, x - 1], n_turn_horizontal[y,
                                                                     x - 1]))
            else:
                adj.append(None)
            if x < width - 1:
                adj.append((line_ul.horizontal[y, x], line_dr.horizontal[y, x],
                            n_turn_horizontal[y, x]))
            else:
                adj.append(None)

            if problem[y][x][0] != '.':
                if problem[y][x][0] == '^':
                    out_idx = 0
                elif problem[y][x][0] == 'v':
                    out_idx = 1
                elif problem[y][x][0] == '<':
                    out_idx = 2
                elif problem[y][x][0] == '>':
                    out_idx = 3
                else:
                    raise ValueError('invalid direction: {}'.format(
                        problem[y][x][0]))
                if adj[out_idx] is None:
                    solver.ensure(False)
                    break
                solver.ensure(adj[out_idx][1])
                if problem[y][x][1] != '?':
                    solver.ensure(adj[out_idx][2] == int(problem[y][x][1:]))
                else:
                    solver.ensure(adj[out_idx][2] == n_turn_unknown)
                for i in range(4):
                    if adj[i] is not None and i != out_idx:
                        solver.ensure(~adj[i][1])
                        solver.ensure(
                            adj[i][0].then((adj[i][2] == 0)
                                           | (adj[i][2] == n_turn_unknown)))
            else:
                adj_present = list(filter(lambda x: x is not None, adj))
                solver.ensure(
                    count_true(map(lambda x: x[0], adj_present)) <= 1)
                solver.ensure(
                    count_true(map(lambda x: x[0], adj_present)) == count_true(
                        map(lambda x: x[1], adj_present)))

                for i in range(4):
                    for j in range(4):
                        if adj[i] is not None and adj[j] is not None and i != j:
                            if (i // 2) == (j // 2):  # straight
                                solver.ensure(
                                    (adj[i][0]
                                     & adj[j][1]).then(adj[i][2] == adj[j][2]))
                            else:
                                solver.ensure(
                                    (adj[i][0] & adj[j][1]
                                     ).then(((adj[i][2] == n_turn_unknown)
                                             & (adj[j][2] == n_turn_unknown))
                                            | (adj[i][2] == adj[j][2] + 1)))
    is_sat = solver.solve()
    return is_sat, has_line
Esempio n. 26
0
def solve_shakashaka(height, width, problem):
    # 1   2   3   4
    # +-+ +     + +-+
    # |/  |\   /|  \|
    # +   +-+ +-+   +
    solver = Solver()
    answer = solver.int_array((height, width), 0, 4)
    solver.add_answer_key(answer)

    for y in range(height):
        for x in range(width):
            if problem[y][x] is not None:
                solver.ensure(answer[y, x] == 0)
                if problem[y][x] >= 0:
                    solver.ensure(count_true(answer.four_neighbors(y, x) != 0) == problem[y][x])
    for y in range(height + 1):
        for x in range(width + 1):
            diagonals = []
            is_empty = []
            is_white_angle = []
            if y > 0 and x > 0:
                diagonals.append(answer[y - 1, x - 1] == 4)
                diagonals.append(answer[y - 1, x - 1] == 2)
                is_empty.append(answer[y - 1, x - 1] == 0 if problem[y - 1][x - 1] is None else False)
                if problem[y - 1][x - 1] is None:
                    is_white_angle.append((answer[y - 1, x - 1] == 0) | (answer[y - 1, x - 1] == 1))
            else:
                diagonals += [False, False]
                is_empty.append(False)
            if y < height and x > 0:
                diagonals.append(answer[y, x - 1] == 1)
                diagonals.append(answer[y, x - 1] == 3)
                is_empty.append(answer[y, x - 1] == 0 if problem[y][x - 1] is None else False)
                if problem[y][x - 1] is None:
                    is_white_angle.append((answer[y, x - 1] == 0) | (answer[y, x - 1] == 2))
            else:
                diagonals += [False, False]
                is_empty.append(False)
            if y < height and x < width:
                diagonals.append(answer[y, x] == 2)
                diagonals.append(answer[y, x] == 4)
                is_empty.append(answer[y, x] == 0 if problem[y][x] is None else False)
                if problem[y][x] is None:
                    is_white_angle.append((answer[y, x] == 0) | (answer[y, x] == 3))
            else:
                diagonals += [False, False]
                is_empty.append(False)
            if y > 0 and x < width:
                diagonals.append(answer[y - 1, x] == 3)
                diagonals.append(answer[y - 1, x] == 1)
                is_empty.append(answer[y - 1, x] == 0 if problem[y - 1][x] is None else False)
                if problem[y - 1][x] is None:
                    is_white_angle.append((answer[y - 1, x] == 0) | (answer[y - 1, x] == 4))
            else:
                diagonals += [False, False]
                is_empty.append(False)
            for i in range(8):
                if diagonals[i] is False:
                    continue
                if i % 2 == 0:
                    solver.ensure(diagonals[i].then(
                        diagonals[(i + 3) % 8] | (is_empty[(i + 3) % 8 // 2] & diagonals[(i + 5) % 8])
                    ))
                else:
                    solver.ensure(diagonals[i].then(
                        diagonals[(i + 5) % 8] | (is_empty[(i + 5) % 8 // 2] & diagonals[(i + 3) % 8])
                    ))
            solver.ensure(count_true(is_white_angle) != 3)
    is_sat = solver.solve()
    return is_sat, answer
Esempio n. 27
0
def solve_view(height, width, problem, is_non_con=False, is_anti_knight=False):
    solver = Solver()
    has_number = solver.bool_array((height, width))
    graph.active_vertices_connected(solver, has_number)
    nums = solver.int_array((height, width), 0, height + width)
    solver.add_answer_key(nums)
    solver.add_answer_key(has_number)

    to_up = solver.int_array((height, width), 0, height - 1)
    solver.ensure(to_up[0, :] == 0)
    solver.ensure(to_up[1:, :] == has_number[:-1, :].cond(0, to_up[:-1, :] + 1))

    to_down = solver.int_array((height, width), 0, height - 1)
    solver.ensure(to_down[-1, :] == 0)
    solver.ensure(to_down[:-1, :] == has_number[1:, :].cond(0, to_down[1:, :] + 1))

    to_left = solver.int_array((height, width), 0, width - 1)
    solver.ensure(to_left[:, 0] == 0)
    solver.ensure(to_left[:, 1:] == has_number[:, :-1].cond(0, to_left[:, :-1] + 1))

    to_right = solver.int_array((height, width), 0, width - 1)
    solver.ensure(to_right[:, -1] == 0)
    solver.ensure(to_right[:, :-1] == has_number[:, 1:].cond(0, to_right[:, 1:] + 1))

    solver.ensure(has_number.then(nums == to_up + to_left + to_down + to_right))
    solver.ensure((has_number[:-1, :] & has_number[1:, :]).then(nums[:-1, :] != nums[1:, :]))
    solver.ensure((has_number[:, :-1] & has_number[:, 1:]).then(nums[:, :-1] != nums[:, 1:]))
    solver.ensure((~has_number).then(nums == 0))
    for y in range(height):
        for x in range(width):
            if problem[y][x] >= 0:
                solver.ensure(nums[y, x] == problem[y][x])
                solver.ensure(has_number[y, x])

    if is_non_con:
        graph.numbers_non_consecutive(solver, nums, has_number)

    if is_anti_knight:
        graph.numbers_anti_knight(solver, nums, has_number)

    is_sat = solver.solve()

    return is_sat, nums, has_number
Esempio n. 28
0
def solve_nurimaze(height, width, wall_vertical, wall_horizontal, mark, start,
                   goal):
    solver = Solver()
    is_white = solver.bool_array((height, width))
    graph.active_vertices_connected(solver, is_white, acyclic=True)
    solver.add_answer_key(is_white)

    solver.ensure(is_white[:-1, :-1] | is_white[:-1, 1:] | is_white[1:, :-1]
                  | is_white[1:, 1:])
    solver.ensure(~(is_white[:-1, :-1] & is_white[:-1, 1:] & is_white[1:, :-1]
                    & is_white[1:, 1:]))
    path = solver.bool_array((height, width))
    solver.ensure(path.then(is_white))
    for y in range(height):
        for x in range(width):
            if x < width - 1 and not wall_vertical[y][x]:
                solver.ensure(is_white[y, x] == is_white[y, x + 1])
            if y < height - 1 and not wall_horizontal[y][x]:
                solver.ensure(is_white[y, x] == is_white[y + 1, x])
            if (y, x) == start or (y, x) == goal:
                solver.ensure(path[y, x])
                solver.ensure(count_true(path.four_neighbors(y, x)) == 1)
            else:
                solver.ensure(
                    path[y,
                         x].then(count_true(path.four_neighbors(y, x)) == 2))
            if mark[y][x] != 0:
                solver.ensure(is_white[y, x])
            if mark[y][x] == 1:  # pass
                solver.ensure(path[y, x])
            elif mark[y][x] == 2:
                solver.ensure(~path[y, x])

    is_sat = solver.solve()
    return is_sat, is_white
Esempio n. 29
0
def solve_akari(height, width, problem, is_anti_knight=True):
    solver = Solver()
    has_light = solver.bool_array((height, width))
    solver.add_answer_key(has_light)

    for y in range(height):
        for x in range(width):
            if problem[y][x] >= -1:
                continue
            if y == 0 or problem[y - 1][x] >= -1:
                group = []
                for y2 in range(y, height):
                    if problem[y2][x] < -1:
                        group.append((y2, x))
                    else:
                        break
                solver.ensure(count_true([has_light[p] for p in group]) <= 1)
            if x == 0 or problem[y][x - 1] >= -1:
                group = []
                for x2 in range(x, width):
                    if problem[y][x2] < -1:
                        group.append((y, x2))
                    else:
                        break
                solver.ensure(count_true([has_light[p] for p in group]) <= 1)

    for y in range(height):
        for x in range(width):
            if problem[y][x] < -1:
                sight = [(y, x)]
                for y2 in range(y - 1, -1, -1):
                    if problem[y2][x] < -1:
                        sight.append((y2, x))
                    else:
                        break
                for y2 in range(y + 1, height, 1):
                    if problem[y2][x] < -1:
                        sight.append((y2, x))
                    else:
                        break
                for x2 in range(x - 1, -1, -1):
                    if problem[y][x2] < -1:
                        sight.append((y, x2))
                    else:
                        break
                for x2 in range(x + 1, width, 1):
                    if problem[y][x2] < -1:
                        sight.append((y, x2))
                    else:
                        break
                solver.ensure(fold_or([has_light[p] for p in sight]))
            else:
                solver.ensure(~has_light[y, x])
                if problem[y][x] >= 0:
                    neighbors = []
                    if y > 0 and problem[y - 1][x] < -1:
                        neighbors.append((y - 1, x))
                    if y < height - 1 and problem[y + 1][x] < -1:
                        neighbors.append((y + 1, x))
                    if x > 0 and problem[y][x - 1] < -1:
                        neighbors.append((y, x - 1))
                    if x < width - 1 and problem[y][x + 1] < -1:
                        neighbors.append((y, x + 1))
                    solver.ensure(count_true([has_light[p] for p in neighbors]) == problem[y][x])

    if is_anti_knight:
        graph.active_vertices_anti_knight(solver, has_light)

    is_sat = solver.solve()
    return is_sat, has_light
Esempio n. 30
0
def solve_amarune(height, width, problem):
    solver = Solver()
    numbers = solver.int_array((height, width), 1, height * width)
    solver.add_answer_key(numbers)

    solver.ensure(alldifferent(numbers))

    for y in range(height):
        for x in range(width - 1):
            solver.ensure(numbers[y, x] > numbers[y, x + 1])

    for y in range(height):
        for x in range(width):
            if problem[y][x] > 0:
                solver.ensure(numbers[y, x] == problem[y][x])

    for y in range(height):
        for x in range(width - 1):
            for i in range(height * width):
                if problem[y + height][x] in [0, 1, 2]:
                    solver.ensure((numbers[y, x + 1] == i).then(
                        numbers[y, x] % i == problem[y + height][x]))
                elif problem[y + height][x] == 3:
                    solver.ensure(
                        (numbers[y, x + 1] == i).then(numbers[y, x] % i >= 3))

    for y in range(height - 1):
        for x in range(width):
            for i in range(height * width):
                if problem[y + height * 2][x] in [0, 1, 2]:
                    solver.ensure(
                        ((numbers[y, x] > numbers[y + 1, x]) &
                         (numbers[y + 1, x] == i)).then(
                             numbers[y, x] % i == problem[y + height * 2][x]))
                    solver.ensure(((numbers[y + 1, x] > numbers[y, x]) &
                                   (numbers[y, x] == i)).then(
                                       numbers[y + 1, x] %
                                       i == problem[y + height * 2][x]))
                elif problem[y + height * 2][x] == 3:
                    solver.ensure(((numbers[y, x] > numbers[y + 1, x]) &
                                   (numbers[y + 1, x] == i)).then(
                                       numbers[y, x] % i >= 3))
                    solver.ensure(((numbers[y + 1, x] > numbers[y, x]) &
                                   (numbers[y, x] == i)).then(
                                       numbers[y + 1, x] % i >= 3))

    is_sat = solver.solve()
    return is_sat, numbers