Esempio n. 1
0
 def test_astar(self):
     'algorithm = "astar"'
     alg = GreedyElim(self.G, self.max_res, self.min_res, algorithm="astar")
     alg.run()
     self.assertEqual(alg.path, self.result_path)
     self.assertEqual(alg.total_cost, self.total_cost)
     self.assertTrue(all(alg.consumed_resources == self.consumed_resources))
Esempio n. 2
0
 def test_threshold(self):
     'test threshold parameter'
     alg = GreedyElim(self.G, self.max_res, self.min_res, threshold=100)
     alg.run()
     self.assertEqual(alg.path, ["Source", "A", "B", "Sink"])
     self.assertEqual(alg.total_cost, 8)
     self.assertTrue(all(alg.consumed_resources == [3, 4.3]))
Esempio n. 3
0
 def test_simple(self):
     'algorithm = "simple" (default)'
     alg = GreedyElim(self.G, self.max_res, self.min_res)
     alg.run()
     self.assertEqual(alg.path, self.result_path)
     self.assertEqual(alg.total_cost, self.total_cost)
     self.assertTrue(all(alg.consumed_resources == self.consumed_resources))
Esempio n. 4
0
 def test_time_limit(self):
     'time limit parameter'
     alg = GreedyElim(self.G, self.max_res, self.min_res, time_limit=0.001)
     start = time()
     alg.run()
     self.assertTrue(time() - start <= 0.001)
     self.assertEqual(alg.path, self.result_path)
     self.assertEqual(alg.total_cost, self.total_cost)
     self.assertTrue(all(alg.consumed_resources == self.consumed_resources))
Esempio n. 5
0
 def test_greedyelim(self):
     alg = GreedyElim(self.G,
                      self.max_res,
                      self.min_res,
                      REF_callback=self.my_callback)
     alg.run()
     self.assertEqual(alg.path, self.result_path_heur)
     self.assertEqual(alg.total_cost, self.total_cost_heur)
     self.assertEqual(list(alg.consumed_resources),
                      self.consumed_resources_heur)
Esempio n. 6
0
 def test_astar_threshold(self):
     'test threshold parameter'
     alg = GreedyElim(self.G,
                      self.max_res,
                      self.min_res,
                      algorithm="astar",
                      threshold=100)
     alg.run()
     self.assertEqual(alg.path, self.result_path)
     self.assertEqual(alg.total_cost, self.total_cost)
     self.assertTrue(all(alg.consumed_resources == self.consumed_resources))
Esempio n. 7
0
 def test_time_limit_threshold(self):
     'time limit and threshold parameters'
     alg = GreedyElim(self.G,
                      self.max_res,
                      self.min_res,
                      time_limit=0.001,
                      threshold=100)
     start = time()
     alg.run()
     self.assertTrue(time() - start <= 0.001)
     self.assertEqual(alg.path, ["Source", "A", "B", "Sink"])
     self.assertEqual(alg.total_cost, 8)
     self.assertTrue(all(alg.consumed_resources == [3, 4.3]))
Esempio n. 8
0
 def test_astar_time_limit_threshold(self):
     'time limit and threshold parameters'
     alg = GreedyElim(self.G,
                      self.max_res,
                      self.min_res,
                      algorithm="astar",
                      time_limit=0.001,
                      threshold=100)
     start = time()
     alg.run()
     self.assertTrue(time() - start <= 0.001)
     self.assertEqual(alg.path, self.result_path)
     self.assertEqual(alg.total_cost, self.total_cost)
     self.assertTrue(all(alg.consumed_resources == self.consumed_resources))
Esempio n. 9
0
    def solve(self, time_limit):
        """
        Solves the subproblem with cspy.

        Resolves until:
        1. heuristic algorithm gives a new route (column with -ve reduced cost);
        2. exact algorithm gives a new route;
        3. neither heuristic nor exact give a new route.

        Note : time_limit has no effect for the moment
        """
        if not self.run_subsolve:
            return self.routes, False

        self.formulate()
        logger.debug("resources = {}".format(self.resources))
        logger.debug("min res = {}".format(self.min_res))
        logger.debug("max res = {}".format(self.max_res))

        more_routes = False

        while True:
            if self.exact:
                logger.debug("solving with bidirectional")
                self.alg = BiDirectional(
                    self.sub_G,
                    self.max_res,
                    self.min_res,
                    direction="both",
                    method="generated",
                    REF_forward=self.get_REF("forward"),
                    REF_backward=self.get_REF("backward"),
                    REF_join=self.get_REF("join"),
                )
            else:
                logger.debug("solving with greedyelim")
                self.alg = GreedyElim(
                    self.sub_G,
                    self.max_res,
                    self.min_res,
                    REF=self.get_REF("forward"),
                    max_depth=40,
                )
            self.alg.run()
            logger.debug("subproblem")
            logger.debug("cost = %s" % self.alg.total_cost)
            logger.debug("resources = %s" % self.alg.consumed_resources)
            if self.alg.total_cost < -(10**-3):
                more_routes = True
                self.add_new_route()
                logger.debug("new route %s" % self.alg.path)
                logger.debug("reduced cost = %s" % self.alg.total_cost)
                logger.debug("real cost = %s" % self.total_cost)
                break
            # If not already solved exactly
            elif not self.exact:
                # Solve exactly from here on
                self.exact = True
            # Solved heuristically and exactly and no more routes
            else:
                break
        return self.routes, more_routes
Esempio n. 10
0
class SubProblemCSPY(SubProblemBase):
    """
    Solves the sub problem for the column generation procedure with cspy;
    attemps to find routes with negative reduced cost.

    Inherits problem parameters from `SubproblemBase`
    """
    def __init__(self, *args, exact):
        """Initializes resources."""
        # Pass arguments to base
        super(SubProblemCSPY, self).__init__(*args)
        # Resource names
        self.alg = None
        self.resources = [
            "stops/mono",
            "load",
            "time",
            "time windows",
            "collect",
            "deliver",
        ]
        self.exact = exact
        # Set number of resources as attribute of graph
        self.sub_G.graph["n_res"] = len(self.resources)
        # Default lower and upper bounds
        self.min_res = [0] * len(self.resources)
        # Add upper bounds for mono, stops, load and time, and time windows
        total_demand = sum(
            [self.sub_G.nodes[v]["demand"] for v in self.sub_G.nodes()])
        self.max_res = [
            len(self.sub_G.nodes()),  # stop/mono
            total_demand,  # load
            sum([
                self.sub_G.edges[u, v]["time"] for u, v in self.sub_G.edges()
            ]),  # time
            1,  # time windows
            total_demand,  # pickup
            total_demand,  # deliver
        ]
        # Initialize cspy edge attributes
        for edge in self.sub_G.edges(data=True):
            edge[2]["res_cost"] = zeros(len(self.resources))
        # Initialize max feasible arrival time
        self.T = 0

    # @profile
    def solve(self, time_limit):
        """
        Solves the subproblem with cspy.

        Resolves until:
        1. heuristic algorithm gives a new route (column with -ve reduced cost);
        2. exact algorithm gives a new route;
        3. neither heuristic nor exact give a new route.

        Note : time_limit has no effect for the moment
        """
        if not self.run_subsolve:
            return self.routes, False

        self.formulate()
        logger.debug("resources = {}".format(self.resources))
        logger.debug("min res = {}".format(self.min_res))
        logger.debug("max res = {}".format(self.max_res))

        more_routes = False

        while True:
            if self.exact:
                logger.debug("solving with bidirectional")
                self.alg = BiDirectional(
                    self.sub_G,
                    self.max_res,
                    self.min_res,
                    direction="both",
                    method="generated",
                    REF_forward=self.get_REF("forward"),
                    REF_backward=self.get_REF("backward"),
                    REF_join=self.get_REF("join"),
                )
            else:
                logger.debug("solving with greedyelim")
                self.alg = GreedyElim(
                    self.sub_G,
                    self.max_res,
                    self.min_res,
                    REF=self.get_REF("forward"),
                    max_depth=40,
                )
            self.alg.run()
            logger.debug("subproblem")
            logger.debug("cost = %s" % self.alg.total_cost)
            logger.debug("resources = %s" % self.alg.consumed_resources)
            if self.alg.total_cost < -(10**-3):
                more_routes = True
                self.add_new_route()
                logger.debug("new route %s" % self.alg.path)
                logger.debug("reduced cost = %s" % self.alg.total_cost)
                logger.debug("real cost = %s" % self.total_cost)
                break
            # If not already solved exactly
            elif not self.exact:
                # Solve exactly from here on
                self.exact = True
            # Solved heuristically and exactly and no more routes
            else:
                break
        return self.routes, more_routes

    def formulate(self):
        """Updates max_res depending on which contraints are active."""
        # Problem specific constraints
        if self.num_stops:
            self.add_max_stops()
        else:
            self.add_monotone()
        if self.load_capacity:
            self.add_max_load()
        if self.duration:
            self.add_max_duration()
        if self.time_windows:
            if not self.duration:
                # Update upper bound for duration
                self.max_res[2] = 1 + self.sub_G.nodes["Sink"]["upper"]
            # Time windows feasibility
            self.max_res[3] = 0
            # Maximum feasible arrival time
            self.T = max([
                self.sub_G.nodes[v]["upper"] +
                self.sub_G.nodes[v]["service_time"] +
                self.sub_G.edges[v, "Sink"]["time"]
                for v in self.sub_G.predecessors("Sink")
            ])
        if self.load_capacity and self.distribution_collection:
            self.max_res[4] = self.load_capacity[self.vehicle_type]
            self.max_res[5] = self.load_capacity[self.vehicle_type]

    def add_new_route(self):
        """Create new route as DiGraph and add to pool of columns"""
        route_id = len(self.routes) + 1
        new_route = DiGraph(name=route_id)
        add_path(new_route, self.alg.path)
        self.total_cost = 0
        for (i, j) in new_route.edges():
            edge_cost = self.sub_G.edges[i, j]["cost"][self.vehicle_type]
            self.total_cost += edge_cost
            new_route.edges[i, j]["cost"] = edge_cost
            if i != "Source":
                self.routes_with_node[i].append(new_route)
        new_route.graph["cost"] = self.total_cost
        new_route.graph["vehicle_type"] = self.vehicle_type
        self.routes.append(new_route)

    def add_max_stops(self):
        """Updates maximum number of stops."""
        # Change label
        self.resources[0] = "stops"
        # The Sink does not count (hence + 1)
        self.max_res[0] = self.num_stops + 1
        for (i, j) in self.sub_G.edges():
            self.sub_G.edges[i, j]["res_cost"][0] = 1

    def add_monotone(self):
        """Updates monotone resource."""
        # Change label
        self.resources[0] = "mono"
        for (i, j) in self.sub_G.edges():
            self.sub_G.edges[i, j]["res_cost"][0] = 1

    def add_max_load(self):
        """Updates maximum load."""
        self.max_res[1] = self.load_capacity[self.vehicle_type]
        for (i, j) in self.sub_G.edges():
            demand_head_node = self.sub_G.nodes[j]["demand"]
            self.sub_G.edges[i, j]["res_cost"][1] = demand_head_node

    def add_max_duration(self):
        """Updates maximum travel time."""
        self.max_res[2] = self.duration
        for (i, j) in self.sub_G.edges():
            travel_time = self.sub_G.edges[i, j]["time"]
            self.sub_G.edges[i, j]["res_cost"][2] = travel_time

    def get_REF(self, type_):
        """
        Returns custom REFs if time, time windows, and/or distribution collection.
        Based on Righini and Salani (2006).
        """
        if self.time_windows or self.distribution_collection:
            # Use custom REF
            if type_ == "forward":
                return self.REF_forward
            elif type_ == "backward":
                return self.REF_backward
            elif type_ == "join":
                return self.REF_join
        else:
            # Use default
            return

    def REF_forward(self, cumulative_res, edge):
        """
        Resource extension for forward paths.
        """
        new_res = array(cumulative_res)
        # extract data
        i, j = edge[0:2]
        # stops/monotone resource
        new_res[0] += 1
        # load
        new_res[1] += self.sub_G.nodes[j]["demand"]
        # time
        service_time = self.sub_G.nodes[i]["service_time"]
        travel_time = self.sub_G.edges[i, j]["time"]
        a_j = self.sub_G.nodes[j]["lower"]
        b_j = self.sub_G.nodes[j]["upper"]

        new_res[2] = max(new_res[2] + service_time + travel_time, a_j)

        # time-window feasibility resource
        if not self.time_windows or new_res[2] <= b_j:
            new_res[3] = 0
        else:
            new_res[3] = 1

        if self.distribution_collection:
            # Pickup
            new_res[4] += self.sub_G.nodes[j]["collect"]
            # Delivery
            new_res[5] = max(new_res[5] + self.sub_G.nodes[j]["demand"],
                             new_res[4])

        return new_res

    def REF_backward(self, cumulative_res, edge):
        """
        Resource extension for backward paths.
        """
        new_res = array(cumulative_res)
        i, j = edge[0:2]
        # monotone resource
        new_res[0] -= 1
        # load
        new_res[1] += self.sub_G.nodes[i]["demand"]
        # Get relevant service times (thetas) and travel time
        theta_i = self.sub_G.nodes[i]["service_time"]
        theta_j = self.sub_G.nodes[j]["service_time"]
        travel_time = self.sub_G.edges[i, j]["time"]
        # Lower time windows
        a_i = self.sub_G.nodes[i]["lower"]
        # Upper time windows
        b_i = self.sub_G.nodes[i]["upper"]
        new_res[2] = max(new_res[2] + theta_j + travel_time,
                         self.T - b_i - theta_i)

        # time-window feasibility
        if not self.time_windows or new_res[2] <= self.T - a_i - theta_i:
            new_res[3] = 0
        else:
            new_res[3] = 1

        if self.distribution_collection:
            # Delivery
            new_res[5] += new_res[5] + self.sub_G.nodes[i]["demand"]
            # Pickup
            new_res[4] = max(new_res[5],
                             new_res[4] + self.sub_G.nodes[i]["collect"])

        return new_res

    def REF_join(self, fwd_res, bwd_res, edge):
        """
        Appropriate joining of forward and backward resources.
        """
        final_res = zeros(len(self.resources))
        i, j = edge[0:2]

        # Get relevant service times (thetas) and travel time
        theta_i = self.sub_G.nodes[i]["service_time"]
        theta_j = self.sub_G.nodes[j]["service_time"]
        travel_time = self.sub_G.edges[i, j]["time"]

        # Invert monotone resource
        bwd_res[0] = self.max_res[0] - bwd_res[0]
        # Fill in final res
        # Monotone / stops
        final_res[0] = fwd_res[0] + bwd_res[0] + 1
        # Load
        final_res[1] = fwd_res[1] + bwd_res[1]
        # time
        final_res[
            2] = fwd_res[2] + theta_i + travel_time + theta_j + bwd_res[2]
        # Time windows
        if not self.time_windows or final_res[2] <= self.T:
            final_res[3] = fwd_res[3] + bwd_res[3]
        else:
            final_res[3] = 1

        if self.distribution_collection:
            final_res[4] = fwd_res[4] + bwd_res[4]
            final_res[5] = fwd_res[5] + bwd_res[5]

        return array(final_res)
Esempio n. 11
0
 def test_time_limit_raises(self):
     'Time limit of 0 raises an exception'
     alg = GreedyElim(self.G, self.max_res, self.min_res, time_limit=0)
     self.assertRaises(Exception, alg.run)