Esempio n. 1
0
def log_to_csv_with_auc_accuracy(y_true, y_pred, y_score, csv_log_file_path, identity_info="dataset"):
    labels = [0, 1]
    result = precision_recall_fscore_support(y_true, y_pred)

    row = []
    row.append(identity_info)

    # neg
    row.append('label ' + str(labels[0]) + ":")
    row.append(result[0][0])
    row.append(result[1][0])
    row.append(result[2][0])
    row.append(result[3][0])

    row.append(' ')
    
    # pos
    row.append('label ' + str(labels[1]) + ":")
    row.append(result[0][1])
    row.append(result[1][1])
    row.append(result[2][1])
    row.append(result[3][1])

    row.append(' ')

    # auc and accuracy
    y_pos_score = transform.map_func(y_score, lambda p : p[1])
    auc = metrics.roc_auc_score(y_true, y_pos_score)
    row.append(auc)

    accuracy = metrics.accuracy_score(y_true, y_pred)
    row.append(accuracy)

    csv_handler.append_row(csv_log_file_path, row)
Esempio n. 2
0
def log_to_csv_multi_f1(y_true, y_pred, csv_log_file_path, identity_info="dataset"):
    result = precision_recall_fscore_support(y_true, y_pred)

    row = []
    row.append(identity_info)

    multi_f1 = list(result[2])
    row += multi_f1

    csv_handler.append_row(csv_log_file_path, row)
Esempio n. 3
0
def log_to_csv(y_true, y_pred, csv_log_file_path, identity_info="dataset"):
    labels = [0, 1]
    result = precision_recall_fscore_support(y_true, y_pred)

    row = []
    row.append(identity_info)

    # neg 
    row.append('label ' + str(labels[0]) + ":")
    row.append(result[0][0])
    row.append(result[1][0])
    row.append(result[2][0])
    row.append(result[3][0])

    row.append(' ')
    
    # pos
    row.append('label ' + str(labels[1]) + ":")
    row.append(result[0][1])
    row.append(result[1][1])
    row.append(result[2][1])
    row.append(result[3][1])

    csv_handler.append_row(csv_log_file_path, row)
Esempio n. 4
0
    #('clf', LogisticRegression(class_weight='balanced', random_state=seed, solver='liblinear')),
    ('clf', LogisticRegression(random_state=seed, solver='liblinear')),
])

text_clf.fit(X_train, y_train)
train_finish_time = time.time()
train_duration = train_finish_time - start_time
print("train time is " + str(train_finish_time - start_time))

print("predicting...")

predicted = text_clf.predict(X_dev)
predicted_proba = text_clf.predict_proba(X_dev)

assert (len(predicted_proba) == len(X_dev))
assert (len(X_dev) == len(y_dev))

print("logging...")
csv_handler.append_row(output_path,
                       ['score_0', 'score_1', 'predict', 'text', 'ground'])
result = []
for i in range(len(predicted_proba)):
    score_0 = predicted_proba[i][0]
    score_1 = predicted_proba[i][1]
    predict = predicted[i]
    text = X_dev[i]
    ground = y_dev[i]
    result.append([score_0, score_1, predict, text, ground])

csv_handler.csv_writelines(output_path, result)
Esempio n. 5
0
def main():
    start_time = time.time()
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
    parser.add_argument("--task_name",
                        default=None,
                        type=str,
                        required=True,
                        help="The name of the task to train.")
    parser.add_argument("--output_dir",
                        default=None,
                        type=str,
                        required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--log_file_path",
                        default=None,
                        type=str,
                        required=True,
                        help="Define log file path.")
    ## Other parameters
    parser.add_argument("--cache_dir",
                        default="",
                        type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length",
                        default=128,
                        type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. \n"
                             "Sequences longer than this will be truncated, and sequences shorter \n"
                             "than this will be padded.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--eval_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for eval.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Proportion of training to perform linear learning rate warmup for. "
                             "E.g., 0.1 = 10%% of training.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--loss_scale',
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    processors = {
        "sst-2": Sst2Processor,
    }

    output_modes = {
        "cola": "classification",
        "sst-2": "classification",
        #"sts-b": "regression",
    }

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')

    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)

    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
        device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))

    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_eval:
        raise ValueError("At least one of `do_train` or `do_eval` must be True.")

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
        raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)

    task_name = args.task_name.lower()

    if task_name not in processors:
        raise ValueError("Task not found: %s" % (task_name))

    processor = processors[task_name]()
    output_mode = output_modes[task_name]

    label_list = processor.get_labels()
    #label_weight = WeightClassCSV(args.data_dir + "/train.csv").get_weights(label_list)
    num_labels = len(label_list)

    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_optimization_steps = None
    if args.do_train:
        train_examples = processor.get_train_examples(args.data_dir)
        num_train_optimization_steps = int(
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
        if args.local_rank != -1:
            num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()

    # Prepare model
    cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed_{}'.format(args.local_rank))
    model = BertForSequenceClassification.from_pretrained(args.bert_model,
              cache_dir=cache_dir,
              num_labels=num_labels)
    if args.fp16:
        model.half()
    model.to(device)
    if args.local_rank != -1:
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

        model = DDP(model)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.do_train:
        param_optimizer = list(model.named_parameters())
        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        optimizer_grouped_parameters = [
            {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
            {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
            ]
        if args.fp16:
            try:
                from apex.optimizers import FP16_Optimizer
                from apex.optimizers import FusedAdam
            except ImportError:
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

            optimizer = FusedAdam(optimizer_grouped_parameters,
                                  lr=args.learning_rate,
                                  bias_correction=False,
                                  max_grad_norm=1.0)
            if args.loss_scale == 0:
                optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
            else:
                optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
            warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
                                                 t_total=num_train_optimization_steps)

        else:
            optimizer = BertAdam(optimizer_grouped_parameters,
                                 lr=args.learning_rate,
                                 warmup=args.warmup_proportion,
                                 t_total=num_train_optimization_steps)

    global_step = 0
    nb_tr_steps = 0
    tr_loss = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            train_examples, label_list, args.max_seq_length, tokenizer, output_mode)
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_examples))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_optimization_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in train_features], dtype=torch.float)

        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, drop_last=True)

        model.train()
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
            tr_loss = 0
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, label_ids = batch

                # define a new function to compute loss values for both output_modes
                logits = model(input_ids, segment_ids, input_mask, labels=None)

                if output_mode == "classification":
                    loss_fct = CrossEntropyLoss()
                    #loss_fct = CrossEntropyLoss(weight = torch.tensor(label_weight).to(device))
                    loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
                elif output_mode == "regression":
                    loss_fct = MSELoss()
                    loss = loss_fct(logits.view(-1), label_ids.view(-1))

                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()

                tr_loss += loss.item()
                nb_tr_examples += input_ids.size(0)
                nb_tr_steps += 1
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        # modify learning rate with special warm up BERT uses
                        # if args.fp16 is False, BertAdam is used that handles this automatically
                        lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
                        for param_group in optimizer.param_groups:
                            param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Save a trained model, configuration and tokenizer
        model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self

        # If we save using the predefined names, we can load using `from_pretrained`
        output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
        output_config_file = os.path.join(args.output_dir, CONFIG_NAME)

        torch.save(model_to_save.state_dict(), output_model_file)
        model_to_save.config.to_json_file(output_config_file)
        tokenizer.save_vocabulary(args.output_dir)

        # Load a trained model and vocabulary that you have fine-tuned
        model = BertForSequenceClassification.from_pretrained(args.output_dir, num_labels=num_labels)
        tokenizer = BertTokenizer.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
    else:
        model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
    model.to(device)

    train_finish_time = time.time()
    train_overall_time = train_finish_time - start_time

    if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        eval_examples = processor.get_dev_examples(args.data_dir)
        eval_features = convert_examples_to_features(
            eval_examples, label_list, args.max_seq_length, tokenizer, output_mode)
        logger.info("***** Running evaluation *****")
        logger.info("  Num examples = %d", len(eval_examples))
        logger.info("  Batch size = %d", args.eval_batch_size)
        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)

        if output_mode == "classification":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
        elif output_mode == "regression":
            all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.float)

        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)

        model.eval()
        eval_loss = 0
        nb_eval_steps = 0
        preds = []

        for input_ids, input_mask, segment_ids, label_ids in tqdm(eval_dataloader, desc="Evaluating"):
            input_ids = input_ids.to(device)
            input_mask = input_mask.to(device)
            segment_ids = segment_ids.to(device)
            label_ids = label_ids.to(device)

            with torch.no_grad():
                logits = model(input_ids, segment_ids, input_mask, labels=None)

            # create eval loss and other metric required by the task
            if output_mode == "classification":
                loss_fct = CrossEntropyLoss()
                #loss_fct = CrossEntropyLoss(weight = torch.tensor(label_weight).to(device))
                tmp_eval_loss = loss_fct(logits.view(-1, num_labels), label_ids.view(-1))
            elif output_mode == "regression":
                loss_fct = MSELoss()
                tmp_eval_loss = loss_fct(logits.view(-1), label_ids.view(-1))
            
            eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if len(preds) == 0:
                preds.append(logits.detach().cpu().numpy())
            else:
                preds[0] = np.append(
                    preds[0], logits.detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        preds = preds[0]
        original_preds = preds.copy()
        if output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif output_mode == "regression":
            preds = np.squeeze(preds)

        result = compute_metrics(task_name, preds, all_label_ids.numpy())

        auc = compute_auc(original_preds, all_label_ids.numpy())

        preds_output_path = os.path.join(args.output_dir, "pred.csv")
        write_preds(original_preds, all_label_ids.numpy(), os.path.join(args.data_dir, "dev.csv"), preds_output_path)

        result['auc'] = auc

        loss = tr_loss/global_step if args.do_train else None

        result['eval_loss'] = eval_loss
        result['global_step'] = global_step
        result['loss'] = loss
        result['train_second'] = train_overall_time
        result['test_second'] = time.time() - train_finish_time
        result['runtime_second'] = time.time() - start_time

        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

        # write to log file
        #log_file_path = "./result/bert.log"
        log_file_path = args.log_file_path
        log_row = []
        log_row.append(args.data_dir)
        log_row.append(result['precision'])
        log_row.append(result['recall'])
        log_row.append(result['f1'])
        log_row.append(result['train_second'])
        log_row.append(result['test_second'])

	    ## append metric report for negative label
        #(pre, rec, fs, sup) = precision_recall_fscore_support(y_true=all_label_ids.numpy(), y_pred=preds, pos_label=0, average='binary')
        #log_row.append("")
        #log_row.append(pre)
        #log_row.append(rec)
        #log_row.append(fs)
        csv_handler.append_row(log_file_path, log_row)
Esempio n. 6
0
train_duration = train_finish_time - start_time
print("train time is " + str(train_finish_time - start_time))

print("predicting...")

predicted = text_clf.predict(X_dev)
predicted_proba = text_clf.predict_proba(X_dev)

assert (len(predicted_proba) == len(X_dev))
assert (len(X_dev) == len(y_dev))

print("logging...")

(precision, recall, fscore,
 support) = metrics.precision_recall_fscore_support(y_dev, predicted)

row = []
row.append(sys.argv[1])
row.append(precision[1])
row.append(recall[1])
row.append(fscore[1])

pos_predicted = transform.map_func(predicted_proba, lambda p: p[1])
auc = metrics.roc_auc_score(y_dev, pos_predicted)
row.append(auc)

accuracy = metrics.accuracy_score(y_dev, predicted)
row.append(accuracy)

csv_handler.append_row(log_file_path, row)
Esempio n. 7
0
    csv_dataset = csv_handler.csv_readlines(csv_input_path)

    y_true = transform.map_func(csv_dataset, lambda row: int(row[y_true_col]))
    y_pred_score = transform.map_func(csv_dataset,
                                      lambda row: float(row[y_pred_col]))

    #y_pred_score = transform.map_func(y_pred_score, lambda score : 1 / (1 + math.exp(-score)))

    thred_col = []

    if thred_method == "min_max_even":
        thred_col = get_threds_by_min_max_even(y_pred_score, num_threds)

    else:  # sorted score even slot
        thred_col = get_threds_by_sorted_score_equal_length(
            y_pred_score, num_threds)

    if print_header == '1':
        csv_handler.append_row(
            csv_output_path,
            ['threshold', 'precision', 'recall', 'fscore', 'support'])

    for thred in thred_col:
        y_pred = transform.map_func(y_pred_score, lambda score: 1
                                    if score >= thred else 0)
        result = precision_recall_fscore_support(y_true, y_pred)

        csv_handler.append_row(
            csv_output_path,
            [thred, result[0][1], result[1][1], result[2][1], result[3][1]])
Esempio n. 8
0
    print("Evaluating ...")
    model.eval()
    predicts = []
    golds = []
    with torch.no_grad():
        for idx, batch in enumerate(tqdm(test_iter, desc="Iteration")):
            inputs, labels = batch.sent, batch.label
            inputs = inputs.to(device)

            logits = model(inputs)
            predict = torch.argmax(logits, dim=1).data.cpu().numpy()
            predicts += list(predict)
            golds += list(labels.data.cpu().numpy())

    precision, recall, f1 = F1(predicts, golds)
    print("Precision: %f, Recall: %f, F1: %f" % (precision, recall, f1))

    train_time = train_overall_time
    test_time = time.time() - train_finish_time

    (precision, recall, fscore,
     support) = metrics.precision_recall_fscore_support(golds, predicts)
    log_row = []
    log_row.append(args.dataset)
    log_row.append(precision[1])
    log_row.append(recall[1])
    log_row.append(fscore[1])
    log_row.append(train_time)
    log_row.append(test_time)
    csv_handler.append_row(args.log_file, log_row)