from csv_operation import csv_reader
from sentiment import anlaysis

data2020 = csv_reader("2021-08southchinasea.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2020-08southchinasea.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])

print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])

js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2020':" + str(len(data2020)) + ", 'data2019':" + str(
    len(data2019))
js_txt += compare_txt

# data2020full = csv_reader("2021_04_05southchinasea.csv", "data")
data2020full = data2020

print("\n2. sentiment anlaysis")
total_sentiment = 0
Esempio n. 2
0
from csv_operation import csv_reader, csv_write
from itertools import groupby
import json



movies = csv_reader("paulg.csv", "twitter_data")
print('1sample', movies[0], "#" * 10, movies[1][12])


# i0_2 = 0
# i2_4 = 0
# i4_6 = 0
# i6_7 = 0
# i7_8 = 0
# year_revenue = []
for movie in movies:
	time = movie[2]
	i_str = movie[12]
	# print(i_str, type(i_str))
	if i_str not in  ('[]', 'mentions') :
		i_str = i_str.replace("\'", "\"")
		t = json.loads(i_str)
		print('name=paulg,name='+t[0]['screen_name']+",'"+time[:16]+"'")
		# name=elonmusk,name=@WholeMarsBlog,'2015-12-07 22:38'

# 	for t in tlist:
# 		name = t['name']
# 		if movie['vote_average'] is not None:
# 			vote_count = float(movie['vote_average'])
# 			if vote_count < 2:
Esempio n. 3
0
    time.sleep(2)
    try:
        places_result['next_page_token']
        print('-' * 20, places_result['next_page_token'])
    except KeyError as e:
        print('Complete')
    else:
        printHotels(searchString,
                    cityid,
                    cityname,
                    jobname,
                    next=places_result['next_page_token'])


if __name__ == "__main__":
    citylist = csv_reader('rank_cities.csv')
    print(citylist[0], citylist[0][0], citylist[0][1])
    destination = citylist[0][1]
    places = []
    # printHotels(mymakets_A[0] + ' near ' + citylist[0][1],  citylist[0][0], citylist[0][1], mymakets_A[0])
    # print(len(places), places[0], '#'*20)
    # print('\n')
    # printHotels(mymakets_A[0] + ' near ' +  citylist[1][1], citylist[1][0],citylist[1][1], mymakets_A[0])
    # print(len(places), places[0], '#'*20)
    for jobname in mymakets_A:
        for cityrow in citylist:
            cityid = cityrow[0]
            cityname = cityrow[1]
            if int(cityid) >= 100 and int(cityid) < 200:
                print(
                    colored(jobname + cityid + cityname,
Esempio n. 4
0
from csv_operation import csv_reader
from sentiment import anlaysis

data2020 = csv_reader("2021_q1_south_china_sea.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2020_q1_south_china_sea.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])

print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])

js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2020':" + str(len(data2020)) + ", 'data2019':" + str(
    len(data2019))
js_txt += compare_txt

data2020full = csv_reader("2021_q1_south_china_sea.csv", "data")

print("\n2. sentiment anlaysis")
total_sentiment = 0

num_positive = 0
Esempio n. 5
0
from csv_operation import csv_reader
from sentiment import anlaysis

data2020 = csv_reader("2021django.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2021flask.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])

print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])

js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2020':" + str(len(data2020)) + ", 'data2019':" + str(
    len(data2019))
js_txt += compare_txt

data2020full = csv_reader("2021full.csv", "data")

print("\n2. sentiment anlaysis")
total_sentiment = 0

num_positive = 0
Esempio n. 6
0
from csv_operation import csv_reader
from sentiment import anlaysis

data2020 = csv_reader("2020senkafu.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2019senkafu.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])

print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])

js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2020':" + str(len(data2020)) + ", 'data2019':" + str(
    len(data2019))
js_txt += compare_txt

data2020full = csv_reader("2020senkafu_full.csv", "data")

print("\n2. sentiment anlaysis")
total_sentiment = 0

num_positive = 0
#找出电影演员和票房总收入的关联

from csv_operation import csv_reader, csv_write
from itertools import groupby
import json

movies = csv_reader("tmdb_5000_movies.csv", "data")
print('1sample', movies[0], "#" * 10)
print('len=', len(movies))
t = json.loads(movies[0]['keywords'])
print(len(t), t[0], t[1])

year_revenue = []
for movie in movies:
    revenue = int(movie['revenue'])
    tlist = json.loads(movie['keywords'])
    for t in tlist:
        name = t['name']

        # print(year, revenue)
        item = [name, revenue]
        year_revenue.append(item)

print(year_revenue)

print('----#--------#--------#----')
my_list2 = []
keyword_revenue = []
keyword_revenue.append(['keyword', 'revenue'])
justwords = []
for i, g in groupby(sorted(year_revenue), key=lambda x: x[0]):
#找出电影演员和票房总收入的关联

from csv_operation import csv_reader, csv_write
from itertools import groupby
import json

movies = csv_reader("tmdb_5000_credits.csv", "data")
print('1sample', movies[0], "#" * 10)
print('len=', len(movies))
t = json.loads(movies[0]['cast'])
print(len(t), t[0], t[1])

year_revenue = []
for movie in movies:
    tlist = json.loads(movie['cast'])
    for t in tlist:
        name = t['name']

        # print(year, revenue)
        item = [name, 1]
        year_revenue.append(item)

print(year_revenue)

print('----#--------#--------#----')
my_list2 = []
for i, g in groupby(sorted(year_revenue), key=lambda x: x[0]):
    count_v = sum(v[1] for v in g)
    if count_v > 30:
        my_list2.append({'word': i, 'size': count_v})
from csv_operation import csv_reader
from sentiment import anlaysis


data2020 = csv_reader("2020file.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2019file.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])


print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])


js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2020':" + str(len(data2020)) + ", 'data2019':" + str(len(data2019))
js_txt += compare_txt


data2020full = csv_reader("2020_total_file.csv", "data")

print("\n2. sentiment anlaysis")
from csv_operation import csv_reader
from sentiment import anlaysis


data2020 = csv_reader("2020tw.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2019tw.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])


print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])


js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2020':" + str(len(data2020)) + ", 'data2019':" + str(len(data2019))
js_txt += compare_txt


data2020full = csv_reader("2020tw_full.csv", "data")

print("\n2. sentiment anlaysis")
Esempio n. 11
0
from csv_operation import csv_reader
from sentiment import anlaysis

# twint -s "Nezha" --since 2021-01-01  -o Nezha.csv --csv
# twint -s "senkaku islands" --since 2021-08-01  -o senkaku.csv --csv
# twint -s "south China sea" --since 2021-08-01  -o southchinasea.csv --csv
# proxychains4 twint -s "中国经济" --since 2021-11-10  -o china_economy.csv --csv
data2020 = csv_reader("2021-08senkaku.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-*-" * 10)
data2019 = csv_reader("2020-08senkaku.csv", "data")
print(data2019[0], "#" * 10, data2019[1], "#" * 10, " \n", data2019[2])

print("-" * 10, "tweets:")
print(data2020[1][10], "\n", "#" * 10, "\n", data2019[1][10])

js_txt = '''

var DATA = {
'''

print("\n1. Heat comparison")
print(len(data2020), " VS ", len(data2019))

compare_txt = "'data2021':" + str(len(data2020)) + ", 'data2020':" + str(
    len(data2019))
js_txt += compare_txt

# data2020full = csv_reader("2021-06senkaku.csv", "data")
data2020full = data2020
import pandas as pd
from csv_operation import csv_reader
from sentiment import anlaysis
import time
# 检查数据集是否正常
data2020 = csv_reader("sum.csv", "data")
print(data2020[0], "#" * 10, data2020[1], "#" * 10, " \n", data2020[2])

print("-" * 10, "tweets:")
# print(data2020[1][3])
# print("data2020[1][10]=", data2020[1][10], "\n", "@" * 10)

print("start", "*-* *-* *-* *-* *-* " * 10)

# 处理基于天的热度
from collections import defaultdict

appearances = defaultdict(int)

for curr in data2020:
    # curr = curr[0].split(',')
    print('curr=>' * 3, curr)
    if len(curr) >= 3 and "2020" in curr[3]:
        appearances[curr[3]] += 1
print('appearances=> ' * 10, appearances)

# time.sleep(100)

# 持久化为其他程序做处理
import pickle