Esempio n. 1
0
def test_ChaudhuriKunduRingFitter_old():

    fitter = muon_ring_finder.ChaudhuriKunduRingFitter()

    points = np.linspace(-100, 100, 200)

    x, y = np.meshgrid(points, points) * u.deg
    weight = np.zeros(x.shape)

    c_x = 50 * u.deg
    c_y = 20 * u.deg

    r = np.sqrt((x - c_x)**2 + (y - c_y)**2)

    min_r = 10 * u.deg
    max_r = 20 * u.deg

    weight[(r > min_r) & (r < max_r)] = 1
    output = fitter.fit(x, y, weight)

    lim_p = 0.05 * u.deg
    lim_r = 1 * u.deg
    rad_a = 0.5 * (max_r + min_r)

    assert abs(output.ring_center_x - c_x) < lim_p
    assert abs(output.ring_center_y - c_y) < lim_p
    assert abs(output.ring_radius - rad_a) < lim_r
def test_ChaudhuriKunduRingFitter():

    geom = CameraGeometry.from_name('HESS-I')

    ring_rad = np.deg2rad(
        1. * u.deg) * 15.  # make sure this is in camera coordinates
    ring_width = np.deg2rad(0.05 * u.deg) * 15.
    geom_pixall = np.empty(geom.pix_x.shape + (2, ))
    geom_pixall[..., 0] = geom.pix_x.value
    geom_pixall[..., 1] = geom.pix_y.value

    # image = generate_muon_model(geom_pixall, ring_rad, ring_width, 0.3, 0.2)
    muon_model = partial(toymodel.generate_muon_model,
                         radius=ring_rad.value,
                         width=ring_width.value,
                         centre_x=-0.2,
                         centre_y=-0.3)

    toymodel_image, toy_signal, toy_noise = \
        toymodel.make_toymodel_shower_image(geom, muon_model)

    clean_toy_mask = tailcuts_clean(geom,
                                    toymodel_image,
                                    boundary_thresh=5,
                                    picture_thresh=10)

    # camera_coord = CameraFrame(x=x,y=y,z=np.zeros(x.shape)*u.m,
    # focal_length = event.inst.optical_foclen[telid], rotation=geom.pix_rotation)
    muonring = muon_ring_finder.ChaudhuriKunduRingFitter(None)

    x = np.rad2deg((geom.pix_x.value / 15.) * u.rad)  # .value
    y = np.rad2deg((geom.pix_y.value / 15.) * u.rad)  # .value

    muonringparam = muonring.fit(x, y, toymodel_image * clean_toy_mask)

    dist = np.sqrt(
        np.power(x - muonringparam.ring_center_x, 2) +
        np.power(y - muonringparam.ring_center_y, 2))
    ring_dist = np.abs(dist - muonringparam.ring_radius)
    muonringparam = muonring.fit(
        x, y, toymodel_image * (ring_dist < muonringparam.ring_radius * 0.4))

    dist = np.sqrt(
        np.power(x - muonringparam.ring_center_x, 2) +
        np.power(y - muonringparam.ring_center_y, 2))
    ring_dist = np.abs(dist - muonringparam.ring_radius)
    muonringparam = muonring.fit(
        x, y, toymodel_image * (ring_dist < muonringparam.ring_radius * 0.4))

    print('Fitted ring radius', muonringparam.ring_radius, 'c.f.', ring_rad)
    print('Fitted ring centre', muonringparam.ring_center_x,
          muonringparam.ring_center_y)

    assert muonringparam.ring_radius is not ring_rad  # .value
    assert muonringparam.ring_center_x is not -0.2
    assert muonringparam.ring_center_y is not -0.3
Esempio n. 3
0
def test_ChaudhuriKunduRingFitterHline():

    fitter = muon_ring_finder.ChaudhuriKunduRingFitter(parent=None)

    x = np.linspace(20, 30, 10) * u.deg  # Make linear array in x
    y = np.full_like(x, 15)  # Fill y array of same size with y
    weight = np.ones(x.shape)  # Fill intensity array with value

    output = fitter.fit(x, y, weight)

    # TODO in muon_ring_fitter decide what to do if unreconstructable
    # ... add Status Flag?
    assert output.ring_radius is not np.NaN
Esempio n. 4
0
def test_ChaudhuriKunduRingFitter():

    geom = CameraGeometry.from_name('LSTCam')
    focal_length = u.Quantity(28, u.m)

    ring_radius = u.Quantity(0.4,
                             u.m)  # make sure this is in camera coordinates
    ring_width = u.Quantity(0.03, u.m)
    center_x = u.Quantity(-0.2, u.m)
    center_y = u.Quantity(-0.3, u.m)

    muon_model = RingGaussian(
        x=center_x,
        y=center_y,
        sigma=ring_width,
        radius=ring_radius,
    )

    image, _, _ = muon_model.generate_image(
        geom,
        intensity=1000,
        nsb_level_pe=5,
    )

    clean_mask = tailcuts_clean(geom,
                                image,
                                boundary_thresh=5,
                                picture_thresh=10)

    fitter = muon_ring_finder.ChaudhuriKunduRingFitter()

    x = geom.pix_x / focal_length * u.rad
    y = geom.pix_y / focal_length * u.rad

    # fit 3 times, first iteration use cleaning, after that use
    # distance to previous fit result
    result = None
    for _ in range(3):
        if result is None:
            mask = clean_mask
        else:
            dist = np.sqrt((x - result.ring_center_x)**2 +
                           (y - result.ring_center_y)**2)
            ring_dist = np.abs(dist - result.ring_radius)
            mask = ring_dist < (result.ring_radius * 0.4)

        result = fitter.fit(x[mask], y[mask], image[mask])

    assert np.isclose(
        result.ring_radius.to_value(u.rad),
        ring_radius / focal_length,
        rtol=0.05,
    )
    assert np.isclose(result.ring_center_x.to_value(u.rad),
                      center_x / focal_length,
                      rtol=0.05)
    assert np.isclose(
        result.ring_center_y.to_value(u.rad),
        center_y / focal_length,
        rtol=0.05,
    )