Esempio n. 1
0
    def draw_camera(self, tel, data, axes=None):
        """
        Draw a camera image using the correct geometry.

        Parameters
        ----------
        tel : int
            The telescope you want drawn.
        data : `np.array`
            1D array with length equal to npix.
        axes : `matplotlib.axes.Axes`
            A matplotlib axes object to plot on, or None to create a new one.

        Returns
        -------
        `ctapipe.visualization.CameraDisplay`
        """

        geom = self.get_geometry(tel)
        axes = axes if axes is not None else plt.gca()
        camera = CameraDisplay(geom, ax=axes)
        camera.image = data
        camera.cmap = plt.cm.viridis
        # camera.add_colorbar(ax=axes, label="Amplitude (ADC)")
        # camera.set_limits_percent(95)  # autoscale
        return camera
Esempio n. 2
0
def display_event(event, geoms):
    """an extremely inefficient display. It creates new instances of
    CameraDisplay for every event and every camera, and also new axes
    for each event. It's hacked, but it works
    """
    print("Displaying... please wait (this is an inefficient implementation)")
    global fig
    ntels = len(event.r0.tels_with_data)
    fig.clear()

    plt.suptitle("EVENT {}".format(event.r0.event_id))

    disps = []

    for ii, tel_id in enumerate(event.r0.tels_with_data):
        print("\t draw cam {}...".format(tel_id))
        nn = int(ceil(sqrt(ntels)))
        ax = plt.subplot(nn, nn, ii + 1)

        x, y = event.inst.pixel_pos[tel_id]
        geom = geoms[tel_id]
        disp = CameraDisplay(geom, ax=ax, title="CT{0}".format(tel_id))
        disp.pixels.set_antialiaseds(False)
        disp.autoupdate = False
        disp.cmap = 'afmhot'
        chan = 0
        signals = event.r0.tel[tel_id].adc_sums[chan].astype(float)
        signals -= signals.mean()
        disp.image = signals
        disp.set_limits_percent(95)
        disp.add_colorbar()
        disps.append(disp)

    return disps
Esempio n. 3
0
def draw_several_cams(geom, ncams=4):

    cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
    fig, axs = plt.subplots(
        1, ncams, figsize=(15, 4),
    )

    for ii in range(ncams):
        disp = CameraDisplay(
            geom,
            ax=axs[ii],
            title="CT{}".format(ii + 1),
        )
        disp.cmap = cmaps[ii]

        model = toymodel.generate_2d_shower_model(
            centroid=(0.2 - ii * 0.1, -ii * 0.05),
            width=0.05 + 0.001 * ii,
            length=0.15 + 0.05 * ii,
            psi=ii * 20 * u.deg,
        )

        image, sig, bg = toymodel.make_toymodel_shower_image(
            geom,
            model.pdf,
            intensity=1500,
            nsb_level_pe=5,
        )

        mask = tailcuts_clean(
            geom,
            image,
            picture_thresh=6 * image.mean(),
            boundary_thresh=4 * image.mean()
        )
        cleaned = image.copy()
        cleaned[~mask] = 0

        hillas = hillas_parameters(geom, cleaned)

        disp.image = image
        disp.add_colorbar(ax=axs[ii])

        disp.set_limits_percent(95)
        disp.overlay_moments(hillas, linewidth=3, color='blue')
    def plot_camera_display(self, image, input_file, noise_pixels_id_list,
                            alive_ped_ev, sum_ped_ev):
        fig, ax = plt.subplots(figsize=(10, 8))
        geom = CameraGeometry.from_name('LSTCam-003')

        disp0 = CameraDisplay(geom, ax=ax)
        disp0.image = image
        disp0.highlight_pixels(noise_pixels_id_list, linewidth=3)
        disp0.add_colorbar(ax=ax,
                           label="N times signal remain after cleaning [%]")
        disp0.cmap = 'gnuplot2'
        ax.set_title("{} \n {}/{}".format(
            input_file.split("/")[-1][8:21], alive_ped_ev, sum_ped_ev),
                     fontsize=25)

        print("{}/{}".format(alive_ped_ev, sum_ped_ev))

        ax.set_xlabel(" ")
        ax.set_ylabel(" ")
        plt.tight_layout()
        plt.show()
Esempio n. 5
0
def draw_several_cams(geom, ncams=4):

    cmaps = ['jet', 'afmhot', 'terrain', 'autumn']
    fig, axs = plt.subplots(1, ncams, figsize=(15, 4), sharey=True, sharex=True)

    for ii in range(ncams):
        disp = CameraDisplay(
            geom,
            ax=axs[ii],
            title="CT{}".format(ii + 1),
        )
        disp.cmap = cmaps[ii]

        model = toymodel.generate_2d_shower_model(
            centroid=(0.2 - ii * 0.1, -ii * 0.05),
            width=0.005 + 0.001 * ii,
            length=0.1 + 0.05 * ii,
            psi=ii * 20 * u.deg,
        )

        image, sig, bg = toymodel.make_toymodel_shower_image(
            geom,
            model.pdf,
            intensity=50,
            nsb_level_pe=1000,
        )

        mask = tailcuts_clean(geom, image, picture_thresh=6*image.mean(),
                              boundary_thresh=4*image.mean())
        cleaned = image.copy()
        cleaned[~mask] = 0

        hillas = hillas_parameters(geom, cleaned)

        disp.image = image
        disp.add_colorbar(ax=axs[ii])

        disp.set_limits_percent(95)
        disp.overlay_moments(hillas, linewidth=3, color='blue')
Esempio n. 6
0
def trigger_uniformity(files,
                       plot="show",
                       event_types=None,
                       disable_bar=False):
    events = event_stream(files, disable_bar=disable_bar)
    if event_types is not None:
        events = filter_event_types(events, flags=event_types)
    # patxh matrix is a bool of size n_patch x n_pixel
    patch_matrix = compute_patch_matrix(camera=DigiCam)
    n_patch, n_pixel = patch_matrix.shape
    top7 = np.zeros([n_patch], dtype=np.float32)
    n_event = 0
    for event in events:
        n_event += 1
        tel = event.r0.tels_with_data[0]
        top7 += np.sum(event.r0.tel[tel].trigger_output_patch7, axis=1)
    patches_rate = top7 / n_event
    pixels_rate = patches_rate.reshape([1, -1]).dot(patch_matrix).flatten()
    print('pixels_rate from', np.min(pixels_rate), 'to', np.max(pixels_rate),
          'trigger/event')
    if plot is None:
        return pixels_rate
    fig1 = plt.figure()
    ax = plt.gca()
    display = CameraDisplay(DigiCam.geometry,
                            ax=ax,
                            title='Trigger uniformity')
    display.add_colorbar()
    display.image = pixels_rate
    output_path = os.path.dirname(plot)
    if plot == "show" or not os.path.isdir(output_path):
        if not plot == "show":
            print('WARNING: Path ' + output_path + ' for output trigger ' +
                  'uniformity does not exist, displaying the plot instead.\n')
        plt.show()
    else:
        plt.savefig(plot)
    plt.close(fig1)
    return pixels_rate
Esempio n. 7
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for data in hessio_event_source(self.infile,
                                        allowed_tels=self._selected_tels,
                                        max_events=self.max_events):

            self.calibrator.calibrate(data)

            if geom is None:
                x, y = data.inst.pixel_pos[self._base_tel]
                flen = data.inst.optical_foclen[self._base_tel]
                geom = CameraGeometry.guess(x, y, flen)
                imsum = np.zeros(shape=x.shape, dtype=np.float)
                disp = CameraDisplay(geom, title=geom.cam_id)
                disp.add_colorbar()
                disp.cmap = 'viridis'

            if len(data.dl0.tels_with_data) <= 2:
                continue

            imsum[:] = 0
            for telid in data.dl0.tels_with_data:
                imsum += data.dl1.tel[telid].image[0]

            self.log.info("event={} ntels={} energy={}" \
                          .format(data.r0.event_id,
                                  len(data.dl0.tels_with_data),
                                  data.mc.energy))
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix is not "":
                filename = "{:020d}{}".format(data.r0.event_id,
                                              self.output_suffix)
                self.log.info("saving: '{}'".format(filename))
                plt.savefig(filename)
Esempio n. 8
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for data in hessio_event_source(self.infile,
                                        allowed_tels=self._selected_tels,
                                        max_events=self.max_events):

            self.calibrator.calibrate(data)

            if geom is None:
                x, y = data.inst.pixel_pos[self._base_tel]
                flen = data.inst.optical_foclen[self._base_tel]
                geom = CameraGeometry.guess(x, y, flen)
                imsum = np.zeros(shape=x.shape, dtype=np.float)
                disp = CameraDisplay(geom, title=geom.cam_id)
                disp.add_colorbar()
                disp.cmap = 'viridis'

            if len(data.dl0.tels_with_data) <= 2:
                continue

            imsum[:] = 0
            for telid in data.dl0.tels_with_data:
                imsum += data.dl1.tel[telid].image[0]

            self.log.info("event={} ntels={} energy={}" \
                          .format(data.r0.event_id,
                                  len(data.dl0.tels_with_data),
                                  data.mc.energy))
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix is not "":
                filename = "{:020d}{}".format(data.r0.event_id,
                                              self.output_suffix)
                self.log.info("saving: '{}'".format(filename))
                plt.savefig(filename)
Esempio n. 9
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for event in self.reader:

            self.calibrator.calibrate(event)

            if geom is None:
                geom = event.inst.subarray.tel[self._base_tel].camera
                imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float)
                disp = CameraDisplay(geom, title=geom.cam_id)
                disp.add_colorbar()
                disp.cmap = 'viridis'

            if len(event.dl0.tels_with_data) <= 2:
                continue

            imsum[:] = 0
            for telid in event.dl0.tels_with_data:
                imsum += event.dl1.tel[telid].image[0]

            self.log.info(
                "event={} ntels={} energy={}".format(
                    event.r0.event_id, len(event.dl0.tels_with_data),
                    event.mc.energy
                )
            )
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix is not "":
                filename = "{:020d}{}".format(
                    event.r0.event_id, self.output_suffix
                )
                self.log.info(f"saving: '{filename}'")
                plt.savefig(filename)
Esempio n. 10
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for event in self.reader:

            self.calibrator(event)

            if geom is None:
                geom = event.inst.subarray.tel[self._base_tel].camera
                imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float)
                disp = CameraDisplay(geom, title=geom.cam_id)
                disp.add_colorbar()
                disp.cmap = 'viridis'

            if len(event.dl0.tels_with_data) <= 2:
                continue

            imsum[:] = 0
            for telid in event.dl0.tels_with_data:
                imsum += event.dl1.tel[telid].image[0]

            self.log.info(
                "event={} ntels={} energy={}".format(
                    event.r0.event_id, len(event.dl0.tels_with_data),
                    event.mc.energy
                )
            )
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix is not "":
                filename = "{:020d}{}".format(
                    event.r0.event_id, self.output_suffix
                )
                self.log.info(f"saving: '{filename}'")
                plt.savefig(filename)
Esempio n. 11
0
    def start(self):
        geom = None
        imsum = None
        disp = None

        for event in self.reader:

            self.calibrator(event)

            if geom is None:
                geom = self.reader.subarray.tel[self._base_tel].camera.geometry
                imsum = np.zeros(shape=geom.pix_x.shape, dtype=np.float64)
                disp = CameraDisplay(geom, title=geom.camera_name)
                disp.add_colorbar()
                disp.cmap = "viridis"

            if len(event.dl0.tel.keys()) <= 2:
                continue

            imsum[:] = 0
            for telid in event.dl0.tel.keys():
                imsum += event.dl1.tel[telid].image

            self.log.info(
                "event={} ntels={} energy={}".format(
                    event.index.event_id,
                    len(event.dl0.tel.keys()),
                    event.simulation.shower.energy,
                )
            )
            disp.image = imsum
            plt.pause(0.1)

            if self.output_suffix != "":
                filename = "{:020d}{}".format(event.index.event_id, self.output_suffix)
                self.log.info(f"saving: '{filename}'")
                plt.savefig(filename)
Esempio n. 12
0
def plot_allparam_map(df):
    nc = 4
    nr = 2
    f,axs = plt.subplots(ncols=nc,nrows=nr,figsize=(12,6))
    # ~ table = Table.read('./NewNectarCam.camgeom.fits.gz')
    # ~ geom = CameraGeometry.from_table(table)
    # ~ geom.rotate(10.3*u.deg)

    geom = CameraGeometry.from_name("NectarCam-002")
        
    for ii,key in enumerate(df):
    # ~ for ii,key in enumerate(['Light I', 'ped mean', 'ped width', 'res', 'Mu2', 'gain']):
        ax = axs[ii%nr,ii//nr%nc]
        blankam = np.zeros(1855)
        blankam[pix_ids]=df[key]
        
        disp = CameraDisplay(geom,title=key,ax=ax)
        disp.add_colorbar(ax=ax)
        disp.set_limits_minmax(zmin=np.min(df[key])*.99,zmax=np.max(df[key])*1.01)
        disp.image = blankam
        ax.set_ylim(-0.8,0.8)
        ax.set_xlim(-0.5,0.4)
    plt.show()
    return
Esempio n. 13
0
                                              psi='35d')

    image, sig, bg = toymodel.make_toymodel_shower_image(geom, model.pdf,
                                                         intensity=50,
                                                         nsb_level_pe=1000)

    # Apply image cleaning
    cleanmask = tailcuts_clean(geom, image, picture_thresh=200,
                               boundary_thresh=100)
    clean = image.copy()
    clean[~cleanmask] = 0.0

    # Calculate image parameters
    hillas = hillas_parameters(geom.pix_x, geom.pix_y, clean)
    print(hillas)

    # Show the camera image and overlay Hillas ellipse and clean pixels
    disp.image = image
    disp.cmap = 'PuOr'
    disp.highlight_pixels(cleanmask, color='black')
    disp.overlay_moments(hillas, color='cyan', linewidth=3)

    # Draw the neighbors of pixel 100 in red, and the neighbor-neighbors in
    # green
    for ii in geom.neighbors[130]:
        draw_neighbors(geom, ii, color='green')

    draw_neighbors(geom, 130, color='cyan', lw=2)

    plt.show()
def main():
    args = parser.parse_args()
    event_generator = fact_event_generator(
        args.inputfile,
        args.drsfile,
        allowed_triggers={4},
    )

    fig = plt.figure(figsize=(12, 6))
    ax1 = fig.add_axes([0, 0, 0.4, 1])
    ax1.set_axis_off()
    divider = make_axes_locatable(ax1)
    cax1 = divider.append_axes('right', size="5%", pad=0.05)

    ax2 = fig.add_axes([0.5, 0.0, 0.4, 1])
    ax2.set_axis_off()
    divider = make_axes_locatable(ax2)
    cax2 = divider.append_axes('right', size="5%", pad=0.05)

    geom = CameraGeometry.from_name('FACT')

    disp1 = CameraDisplay(geom, ax=ax1)
    disp1.add_colorbar(cax=cax1, label='Photons')
    disp2 = CameraDisplay(geom, ax=ax2)
    disp2.add_colorbar(cax=cax2, label='ArrivalTime')

    ax1.set_title('Photons')
    ax2.set_title('Peak Position')

    for e in event_generator:

        dl1_calibrator.calibrate(e)

        image = e.dl1.tel[0].image[0]
        cleaning_mask = tailcuts_clean(geom, image, 5, 3.5)

        if sum(cleaning_mask) < 15:
            continue

        hillas_container = hillas_parameters(
            geom.pix_x[cleaning_mask],
            geom.pix_y[cleaning_mask],
            image[cleaning_mask],
        )

        disp1.overlay_moments(hillas_container,
                              linewidth=1.5,
                              color='c',
                              with_label=False)
        disp1.highlight_pixels(cleaning_mask)

        disp1.image = e.dl1.tel[0].image[0]
        disp2.image = e.dl1.tel[0].peakpos[0]

        for disp in (disp1, disp2):
            disp.highlight_pixels(cleaning_mask, color='r', linewidth=1.5)

        fig.suptitle('FACT Event {}'.format(e.trig.gps_time.iso))

        plt.pause(0.01)
        input('Press enter for next event')
Esempio n. 15
0
def nsb_rate(
        files, aux_basepath, dark_histo_file, param_file, template_filename,
        output=None, plot="show", plot_nsb_range=None, norm="log",
        plot_baselines=False, disable_bar=False, max_events=None, n_skip=10,
        stars=True,
        bias_resistance=1e4 * u.Ohm, cell_capacitance=5e-14 * u.Farad
):
    files = np.atleast_1d(files)

    if len(files) == 1 and not files[0].endswith('.fz'):
        table = Table.read(files[0])[:max_events]
        data = dict(table)
        data['nsb_rate'] = np.array(data['nsb_rate']) * u.GHz
    else:
        dark_histo = Histogram1D.load(dark_histo_file)
        n_pixel = len(DigiCam.geometry.neighbors)
        pixels = np.arange(n_pixel, dtype=int)
        with open(param_file) as file:
            pulse_template = NormalizedPulseTemplate.load(template_filename)
            pulse_area = pulse_template.integral() * u.ns
            charge_to_amplitude = pulse_template.compute_charge_amplitude_ratio(7, 4)
            calibration_parameters = yaml.load(file)
            gain_integral = np.array(calibration_parameters['gain'])
            gain_amplitude = gain_integral * charge_to_amplitude
            crosstalk = np.array(calibration_parameters['mu_xt'])
        events = calibration_event_stream(files, max_events=max_events,
                                          disable_bar=disable_bar)
        events = add_slow_data_calibration(
            events, basepath=aux_basepath,
            aux_services=('DriveSystem', )
        )
        data = {
            "baseline": [],
            "nsb_rate": [],
            "good_pixels_mask": [],
            "timestamp": [],
            "event_id": [],
            "az": [],
            "el": [],
        }
        bad_pixels = get_bad_pixels(
            calib_file=param_file, nsigma_gain=5, nsigma_elecnoise=5,
            dark_histo=dark_histo_file, nsigma_dark=8, plot=None, output=None
        )
        events_skipped = 0
        for event in events:
            if event.event_type.INTERNAL not in event.event_type:
                continue
            events_skipped += 1
            if events_skipped < n_skip:
                continue
            events_skipped = 0
            data['baseline'].append(event.data.digicam_baseline)
            baseline_shift = event.data.digicam_baseline - dark_histo.mean()
            rate = _compute_nsb_rate(
                baseline_shift=baseline_shift, gain=gain_amplitude,
                pulse_area=pulse_area, crosstalk=crosstalk,
                bias_resistance=bias_resistance, cell_capacitance=cell_capacitance
            )
            bad_pixels_event = np.unique(np.hstack(
                (
                    bad_pixels,
                    pixels[rate < 0],
                    pixels[rate > 5 * u.GHz]
                )
            ))
            avg_matrix = _get_average_matrix_bad_pixels(
                DigiCam.geometry, bad_pixels_event
            )
            good_pixels_mask = np.ones(n_pixel, dtype=bool)
            good_pixels_mask[bad_pixels_event] = False
            good_pixels = pixels[good_pixels_mask]
            rate[bad_pixels_event] = avg_matrix[bad_pixels_event, :].dot(
                rate[good_pixels]
            )
            data['good_pixels_mask'].append(good_pixels_mask)
            data['timestamp'].append(event.data.local_time)
            data['event_id'].append(event.event_id)
            data['nsb_rate'].append(rate)
            data['az'].append(event.slow_data.DriveSystem.current_position_az)
            data['el'].append(event.slow_data.DriveSystem.current_position_el)
        data['nsb_rate'] = np.array(data['nsb_rate']) * u.GHz
        if output is not None:
            table = Table(data)
            if os.path.isfile(output):
                os.remove(output)
            table.write(output, format='fits')

    time_obs = Time(
        np.array(data['timestamp'], dtype=np.float64) * 1e-9,
        format='unix'
    )
    if plot_baselines:
        fig2, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 8), dpi=50)
        baseline_std = np.std(data['baseline'], axis=0)
        ax1.hist(baseline_std, 100)
        ax1.set_xlabel('std(baseline) [LSB]')
        # pixels_shown = np.arange(len(baseline_std))[baseline_std > 10]
        pixels_shown = [834,]
        ax2.plot_date(
            time_obs.to_datetime(),
            data['baseline'][:, pixels_shown],
            '-'
        )
        ax2.set_xlabel('time')
        ax2.set_ylabel('baseline [LSB]')
        plt.tight_layout()
        plt.show()
        plt.close(fig2)

    az_obs = np.array(data['az']) * u.deg
    el_obs = np.array(data['el']) * u.deg
    n_event = len(data['timestamp'])
    fig1, ax = plt.subplots(1, 1, figsize=(16, 12), dpi=50)
    date = datetime.fromtimestamp(data['timestamp'][0]*1e-9)
    date_str = date.strftime("%H:%M:%S")
    display = CameraDisplay(
        DigiCam.geometry, ax=ax, norm=norm,
        title='NSB rate [GHz], t=' + date_str
    )
    rate_ghz = np.array(data['nsb_rate'][0].to(u.GHz).value)
    display.image = rate_ghz
    if plot_nsb_range is None:
        min_range_rate = np.max([np.min(rate_ghz), 50e-3])
        plot_nsb_range = (min_range_rate, np.max(rate_ghz))
    display.set_limits_minmax(*plot_nsb_range)
    display.add_colorbar(ax=ax)
    bad_pixels = np.arange(
        len(data['good_pixels_mask'][0])
    )[~data['good_pixels_mask'][0]]
    display.highlight_pixels(bad_pixels, color='r', linewidth=2)
    display.axes.set_xlim([-500., 500.])
    display.axes.set_ylim([-500., 500.])
    plt.tight_layout()
    if stars is True:
        stars_az, stars_alt, stars_pmag = get_stars_in_fov(
            az_obs[0], el_obs[0], time_obs
        )
        stars_x, stars_y = transform_azel_to_xy(
            stars_az, stars_alt, az_obs, el_obs
        )
        point_stars = []
        for index_star in range(len(stars_pmag)):
            point_star, = ax.plot(
                stars_x[index_star, 0],
                stars_y[index_star, 0],
                'ok',
                ms=20-2*stars_pmag[index_star],
                mew=3,
                mfc='None'
            )
            point_stars.append(point_star)

    def update(i, display):
        print('frame', i, '/', len(data['timestamp']))
        display.image = data['nsb_rate'][i].to(u.GHz).value
        date = datetime.fromtimestamp(data['timestamp'][i] * 1e-9)
        date_str = date.strftime("%H:%M:%S")
        display.axes.set_title('NSB rate [GHz], t=' + date_str)
        bad_pixels = np.arange(
            len(data['good_pixels_mask'][i])
        )[~data['good_pixels_mask'][i]]
        display.highlight_pixels(
            bad_pixels, color='r', linewidth=2
        )
        if stars is True:
            for index_star in range(len(stars_pmag)):
                point_stars[index_star].set_xdata(
                    stars_x[index_star, i]
                )
                point_stars[index_star].set_ydata(
                    stars_y[index_star, i]
                )

    anim = FuncAnimation(
        fig1,
        update,
        frames=len(data['timestamp']),
        interval=20,
        fargs=(display, )
    )
    Writer = animation.writers['ffmpeg']
    writer = Writer(fps=50, metadata=dict(artist='Y. Renier'),
                    bitrate=4000, codec='h263p')

    output_path = os.path.dirname(plot)
    if plot == "show" or \
            (output_path != "" and not os.path.isdir(output_path)):
        if not plot == "show":
            print('WARNING: Path ' + output_path + ' for output trigger ' +
                  'uniformity does not exist, displaying the plot instead.\n')
        display.enable_pixel_picker()
        plt.show()
    else:
        anim.save(plot, writer=writer)
        print(plot, 'created')
    plt.close(fig1)
Esempio n. 16
0
import numpy as np
from matplotlib import pyplot as plt

from ctapipe.instrument import CameraDescription, CameraGeometry
from ctapipe.visualization import CameraDisplay

if __name__ == "__main__":

    plt.style.use("bmh")

    camera_names = CameraDescription.get_known_camera_names()
    n_tels = len(camera_names)
    n_rows = np.trunc(np.sqrt(n_tels)).astype(int)
    n_cols = np.ceil(n_tels / n_rows).astype(int)
    plt.figure(figsize=(15, 6))

    for ii, name in enumerate(sorted(camera_names)):
        print("plotting", name)
        geom = CameraGeometry.from_name(name)
        ax = plt.subplot(n_rows, n_cols, ii + 1)
        disp = CameraDisplay(geom)
        disp.image = np.random.uniform(size=geom.pix_id.shape)
        disp.cmap = "viridis"
        plt.xlabel("")
        plt.ylabel("")

    plt.tight_layout()
    plt.show()
    def start(self):

        disp = None

        for event in tqdm(
                self.event_source,
                desc=f"Tel{self.tel}",
                total=self.event_source.max_events,
                disable=~self.progress,
        ):

            self.log.debug(event.trigger)
            self.log.debug(f"Energy: {event.simulation.shower.energy}")

            self.calibrator(event)

            if disp is None:
                geom = self.event_source.subarray.tel[self.tel].camera.geometry
                self.log.info(geom)
                disp = CameraDisplay(geom)
                # disp.enable_pixel_picker()
                disp.add_colorbar()
                if self.display:
                    plt.show(block=False)

            # display the event
            disp.axes.set_title("CT{:03d} ({}), event {:06d}".format(
                self.tel, geom.camera_name, event.index.event_id))

            if self.samples:
                # display time-varying event
                data = event.dl0.tel[self.tel].waveform
                for ii in range(data.shape[1]):
                    disp.image = data[:, ii]
                    disp.set_limits_percent(70)
                    plt.suptitle(f"Sample {ii:03d}")
                    if self.display:
                        plt.pause(self.delay)
                    if self.write:
                        plt.savefig(
                            f"CT{self.tel:03d}_EV{event.index.event_id:10d}"
                            f"_S{ii:02d}.png")
            else:
                # display integrated event:
                im = event.dl1.tel[self.tel].image

                if self.clean:
                    mask = tailcuts_clean(geom,
                                          im,
                                          picture_thresh=10,
                                          boundary_thresh=7)
                    im[~mask] = 0.0

                disp.image = im

                if self.hillas:
                    try:
                        ellipses = disp.axes.findobj(Ellipse)
                        if len(ellipses) > 0:
                            ellipses[0].remove()

                        params = hillas_parameters(geom, image=im)
                        disp.overlay_moments(params,
                                             color="pink",
                                             lw=3,
                                             with_label=False)
                    except HillasParameterizationError:
                        pass

                if self.display:
                    plt.pause(self.delay)
                if self.write:
                    plt.savefig(
                        f"CT{self.tel:03d}_EV{event.index.event_id:010d}.png")

        self.log.info("FINISHED READING DATA FILE")

        if disp is None:
            self.log.warning(
                "No events for tel {} were found in {}. Try a "
                "different EventIO file or another telescope".format(
                    self.tel, self.infile))
Esempio n. 18
0
def check_interleave_pedestal_cleaning(path_list, calib_time_file, calib_file, max_events=10000):

    signal_place_after_clean = np.zeros(1855)
    sum_ped_ev = 0
    alive_ped_ev = 0

    for path in path_list:
        print(path)
        r0_r1_calibrator = LSTR0Corrections(pedestal_path=None,
                                            r1_sample_start=3,
                                            r1_sample_end=39)

        r1_dl1_calibrator = LSTCameraCalibrator(calibration_path=calib_file,
                                                time_calibration_path=calib_time_file,
                                                extractor_product="LocalPeakWindowSum",
                                                config=charge_config,
                                                allowed_tels=[1])

        reader = LSTEventSource(input_url=path, max_events=max_events)


        for i, ev in enumerate(reader):
            r0_r1_calibrator.calibrate(ev)
            if i%10000 == 0:
                print(ev.r0.event_id)

            if ev.lst.tel[1].evt.tib_masked_trigger == 32:
                sum_ped_ev += 1

                r1_dl1_calibrator(ev)

                img = ev.dl1.tel[1].image

                geom = ev.inst.subarray.tel[1].camera
                clean = tailcuts_clean(
                                    geom,
                                    img,
                                    picture_thresh=6,
                                    boundary_thresh=3,
                                    min_number_picture_neighbors=1,
                                    keep_isolated_pixels=False
                                    )

                cleaned = img.copy()
                cleaned[~clean] = 0.0

                signal_place_after_clean[np.where(clean == True)] += 1

                if np.sum(cleaned>0) > 0:
                    alive_ped_ev += 1

    fig, ax = plt.subplots(figsize=(8, 8))
    geom = ev.inst.subarray.tel[1].camera

    disp0 = CameraDisplay(geom, ax=ax)
    disp0.image = signal_place_after_clean/sum_ped_ev
    disp0.add_colorbar(ax=ax, label="N times signal remain after cleaning")
    disp0.cmap = 'gnuplot2'
    ax.set_title("{} \n {}/{}".format(path.split("/")[-1][8:21], alive_ped_ev, sum_ped_ev))

    print(path.split("/")[-1][8:21])
    print("{}/{}".format(alive_ped_ev, sum_ped_ev))

    ax.set_xlabel(" ")
    ax.set_ylabel(" ")
    plt.tight_layout()
    plt.show()

    return signal_place_after_clean, sum_ped_ev
Esempio n. 19
0
def plot(event, telid, chan, extractor_name):
    # Extract required images
    dl0 = event.dl0.tel[telid].waveform[chan]

    t_pe = event.mc.tel[telid].photo_electron_image
    dl1 = event.dl1.tel[telid].image[chan]
    max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
    max_charges = np.max(dl0, axis=1)
    max_pix = int(np.argmax(max_charges))
    min_pix = int(np.argmin(max_charges))

    geom = event.inst.subarray.tel[telid].camera
    nei = geom.neighbors

    # Get Neighbours
    max_pixel_nei = nei[max_pix]
    min_pixel_nei = nei[min_pix]

    # Draw figures
    ax_max_nei = {}
    ax_min_nei = {}
    fig_waveforms = plt.figure(figsize=(18, 9))
    fig_waveforms.subplots_adjust(hspace=.5)
    fig_camera = plt.figure(figsize=(15, 12))

    ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
    ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
    ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
    ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
    ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
    ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
    ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
    ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

    ax_img_nei = fig_camera.add_subplot(2, 2, 1)
    ax_img_max = fig_camera.add_subplot(2, 2, 2)
    ax_img_true = fig_camera.add_subplot(2, 2, 3)
    ax_img_cal = fig_camera.add_subplot(2, 2, 4)

    # Draw max pixel traces
    ax_max_pix.plot(dl0[max_pix])
    ax_max_pix.set_xlabel("Time (ns)")
    ax_max_pix.set_ylabel("DL0 Samples (ADC)")
    ax_max_pix.set_title(
        f'(Max) Pixel: {max_pix}, True: {t_pe[max_pix]}, '
        f'Measured = {dl1[max_pix]:.3f}'
    )
    max_ylim = ax_max_pix.get_ylim()
    for i, ax in ax_max_nei.items():
        if len(max_pixel_nei) > i:
            pix = max_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title(
                "(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                    .format(pix, t_pe[pix], dl1[pix])
            )
            ax.set_ylim(max_ylim)

    # Draw min pixel traces
    ax_min_pix.plot(dl0[min_pix])
    ax_min_pix.set_xlabel("Time (ns)")
    ax_min_pix.set_ylabel("DL0 Samples (ADC)")
    ax_min_pix.set_title(
        f'(Min) Pixel: {min_pix}, True: {t_pe[min_pix]}, '
        f'Measured = {dl1[min_pix]:.3f}'
    )
    ax_min_pix.set_ylim(max_ylim)
    for i, ax in ax_min_nei.items():
        if len(min_pixel_nei) > i:
            pix = min_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title(
                f'(Min Nei) Pixel: {pix}, True: {t_pe[pix]}, '
                f'Measured = {dl1[pix]:.3f}'
            )
            ax.set_ylim(max_ylim)

    # Draw cameras
    nei_camera = np.zeros_like(max_charges, dtype=np.int)
    nei_camera[min_pixel_nei] = 2
    nei_camera[min_pix] = 1
    nei_camera[max_pixel_nei] = 3
    nei_camera[max_pix] = 4
    camera = CameraDisplay(geom, ax=ax_img_nei)
    camera.image = nei_camera
    ax_img_nei.set_title("Neighbour Map")
    ax_img_nei.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_nei.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    camera = CameraDisplay(geom, ax=ax_img_max)
    camera.image = dl0[:, max_time]
    camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
    ax_img_max.set_title(f"Max Timeslice (T = {max_time})")
    ax_img_max.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_max.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )

    camera = CameraDisplay(geom, ax=ax_img_true)
    camera.image = t_pe
    camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
    ax_img_true.set_title("True Charge")
    ax_img_true.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_true.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )

    camera = CameraDisplay(geom, ax=ax_img_cal)
    camera.image = dl1
    camera.add_colorbar(ax=ax_img_cal, label="Calib Charge (Photo-electrons)")
    ax_img_cal.set_title(f"Charge (integrator={extractor_name})")
    ax_img_cal.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords='data',
        xytext=(0.05, 0.98),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='red', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )
    ax_img_cal.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords='data',
        xytext=(0.05, 0.94),
        textcoords='axes fraction',
        arrowprops=dict(facecolor='orange', width=2, alpha=0.4),
        horizontalalignment='left',
        verticalalignment='top'
    )

    fig_waveforms.suptitle(f"Integrator = {extractor_name}")
    fig_camera.suptitle(f"Camera = {geom.cam_id}")

    plt.show()
Esempio n. 20
0
    def plot(self, input_file, event, telid, chan, extractor_name, nei):
        # Extract required images
        dl0 = event.dl0.tel[telid].adc_samples[chan]
        t_pe = event.mc.tel[telid].photo_electron_image
        dl1 = event.dl1.tel[telid].image[chan]
        max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
        max_charges = np.max(dl0, axis=1)
        max_pix = int(np.argmax(max_charges))
        min_pix = int(np.argmin(max_charges))

        geom = CameraGeometry.guess(*event.inst.pixel_pos[telid],
                                    event.inst.optical_foclen[telid])

        # Get Neighbours
        max_pixel_nei = nei[max_pix]
        min_pixel_nei = nei[min_pix]

        # Get Windows
        windows = event.dl1.tel[telid].extracted_samples[chan]
        length = np.sum(windows, axis=1)
        start = np.argmax(windows, axis=1)
        end = start + length

        # Draw figures
        ax_max_nei = {}
        ax_min_nei = {}
        fig_waveforms = plt.figure(figsize=(18, 9))
        fig_waveforms.subplots_adjust(hspace=.5)
        fig_camera = plt.figure(figsize=(15, 12))

        ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
        ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
        ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
        ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
        ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
        ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
        ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
        ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

        ax_img_nei = fig_camera.add_subplot(2, 2, 1)
        ax_img_max = fig_camera.add_subplot(2, 2, 2)
        ax_img_true = fig_camera.add_subplot(2, 2, 3)
        ax_img_cal = fig_camera.add_subplot(2, 2, 4)

        # Draw max pixel traces
        ax_max_pix.plot(dl0[max_pix])
        ax_max_pix.set_xlabel("Time (ns)")
        ax_max_pix.set_ylabel("DL0 Samples (ADC)")
        ax_max_pix.set_title("(Max) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(max_pix, t_pe[max_pix], dl1[max_pix]))
        max_ylim = ax_max_pix.get_ylim()
        ax_max_pix.plot([start[max_pix], start[max_pix]],
                        ax_max_pix.get_ylim(), color='r', alpha=1)
        ax_max_pix.plot([end[max_pix], end[max_pix]],
                        ax_max_pix.get_ylim(), color='r', alpha=1)
        for i, ax in ax_max_nei.items():
            if len(max_pixel_nei) > i:
                pix = max_pixel_nei[i]
                ax.plot(dl0[pix])
                ax.set_xlabel("Time (ns)")
                ax.set_ylabel("DL0 Samples (ADC)")
                ax.set_title("(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(pix, t_pe[pix], dl1[pix]))
                ax.set_ylim(max_ylim)
                ax.plot([start[pix], start[pix]],
                        ax.get_ylim(), color='r', alpha=1)
                ax.plot([end[pix], end[pix]],
                        ax.get_ylim(), color='r', alpha=1)

        # Draw min pixel traces
        ax_min_pix.plot(dl0[min_pix])
        ax_min_pix.set_xlabel("Time (ns)")
        ax_min_pix.set_ylabel("DL0 Samples (ADC)")
        ax_min_pix.set_title("(Min) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(min_pix, t_pe[min_pix], dl1[min_pix]))
        ax_min_pix.set_ylim(max_ylim)
        ax_min_pix.plot([start[min_pix], start[min_pix]],
                        ax_min_pix.get_ylim(), color='r', alpha=1)
        ax_min_pix.plot([end[min_pix], end[min_pix]],
                        ax_min_pix.get_ylim(), color='r', alpha=1)
        for i, ax in ax_min_nei.items():
            if len(min_pixel_nei) > i:
                pix = min_pixel_nei[i]
                ax.plot(dl0[pix])
                ax.set_xlabel("Time (ns)")
                ax.set_ylabel("DL0 Samples (ADC)")
                ax.set_title("(Min Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                             .format(pix, t_pe[pix], dl1[pix]))
                ax.set_ylim(max_ylim)
                ax.plot([start[pix], start[pix]],
                        ax.get_ylim(), color='r', alpha=1)
                ax.plot([end[pix], end[pix]],
                        ax.get_ylim(), color='r', alpha=1)

        # Draw cameras
        nei_camera = np.zeros_like(max_charges, dtype=np.int)
        nei_camera[min_pixel_nei] = 2
        nei_camera[min_pix] = 1
        nei_camera[max_pixel_nei] = 3
        nei_camera[max_pix] = 4
        camera = CameraDisplay(geom, ax=ax_img_nei)
        camera.image = nei_camera
        camera.cmap = plt.cm.viridis
        ax_img_nei.set_title("Neighbour Map")
        ax_img_nei.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data', xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_nei.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data', xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        camera = CameraDisplay(geom, ax=ax_img_max)
        camera.image = dl0[:, max_time]
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
        ax_img_max.set_title("Max Timeslice (T = {})".format(max_time))
        ax_img_max.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data', xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_max.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data', xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')

        camera = CameraDisplay(geom, ax=ax_img_true)
        camera.image = t_pe
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
        ax_img_true.set_title("True Charge")
        ax_img_true.annotate("Pixel: {}".format(max_pix),
                             xy=(geom.pix_x.value[max_pix],
                                 geom.pix_y.value[max_pix]),
                             xycoords='data', xytext=(0.05, 0.98),
                             textcoords='axes fraction',
                             arrowprops=dict(facecolor='red', width=2,
                                             alpha=0.4),
                             horizontalalignment='left',
                             verticalalignment='top')
        ax_img_true.annotate("Pixel: {}".format(min_pix),
                             xy=(geom.pix_x.value[min_pix],
                                 geom.pix_y.value[min_pix]),
                             xycoords='data', xytext=(0.05, 0.94),
                             textcoords='axes fraction',
                             arrowprops=dict(facecolor='orange', width=2,
                                             alpha=0.4),
                             horizontalalignment='left',
                             verticalalignment='top')

        camera = CameraDisplay(geom, ax=ax_img_cal)
        camera.image = dl1
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_cal,
                            label="Calib Charge (Photo-electrons)")
        ax_img_cal.set_title("Charge (integrator={})".format(extractor_name))
        ax_img_cal.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data', xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_cal.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data', xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange', width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')

        fig_waveforms.suptitle("Integrator = {}".format(extractor_name))
        fig_camera.suptitle("Camera = {}".format(geom.cam_id))

        waveform_output_name = "e{}_t{}_c{}_extractor{}_waveform.pdf"\
            .format(event.count, telid, chan, extractor_name)
        camera_output_name = "e{}_t{}_c{}_extractor{}_camera.pdf"\
            .format(event.count, telid, chan, extractor_name)

        output_dir = self.output_dir
        if output_dir is None:
            output_dir = input_file.output_directory
        output_dir = os.path.join(output_dir, self.name)
        if not os.path.exists(output_dir):
            self.log.info("Creating directory: {}".format(output_dir))
            os.makedirs(output_dir)

        waveform_output_path = os.path.join(output_dir, waveform_output_name)
        self.log.info("Saving: {}".format(waveform_output_path))
        fig_waveforms.savefig(waveform_output_path, format='pdf',
                              bbox_inches='tight')

        camera_output_path = os.path.join(output_dir, camera_output_name)
        self.log.info("Saving: {}".format(camera_output_path))
        fig_camera.savefig(camera_output_path, format='pdf',
                           bbox_inches='tight')
Esempio n. 21
0
from ctapipe.instrument import CameraGeometry
from ctapipe.visualization import CameraDisplay

if __name__ == '__main__':

    plt.style.use('ggplot')

    fig = plt.figure(figsize=(12, 8))
    ax = fig.add_subplot(1, 1, 1)

    geom = CameraGeometry.from_name('NectarCam')
    disp = CameraDisplay(geom, ax=ax)
    disp.add_colorbar()

    model = toymodel.generate_2d_shower_model(centroid=(0.05, 0.0),
                                              width=0.005,
                                              length=0.025,
                                              psi='35d')

    image, sig, bg = toymodel.make_toymodel_shower_image(geom,
                                                         model.pdf,
                                                         intensity=50,
                                                         nsb_level_pe=20)

    disp.image = image

    mask = disp.image > 15
    disp.highlight_pixels(mask, linewidth=3)

    plt.show()
Esempio n. 22
0
    def start(self):

        disp = None

        for event in tqdm(self.event_source,
                          desc='Tel{}'.format(self.tel),
                          total=self.event_source.max_events,
                          disable=~self.progress):

            self.log.debug(event.trig)
            self.log.debug("Energy: {}".format(event.mc.energy))

            self.calibrator.calibrate(event)

            if disp is None:
                geom = event.inst.subarray.tel[self.tel].camera
                self.log.info(geom)
                disp = CameraDisplay(geom)
                # disp.enable_pixel_picker()
                disp.add_colorbar()
                if self.display:
                    plt.show(block=False)

            # display the event
            disp.axes.set_title('CT{:03d} ({}), event {:06d}'.format(
                self.tel, geom.cam_id, event.r0.event_id))

            if self.samples:
                # display time-varying event
                data = event.dl0.tel[self.tel].pe_samples[self.channel]
                for ii in range(data.shape[1]):
                    disp.image = data[:, ii]
                    disp.set_limits_percent(70)
                    plt.suptitle("Sample {:03d}".format(ii))
                    if self.display:
                        plt.pause(self.delay)
                    if self.write:
                        plt.savefig('CT{:03d}_EV{:10d}_S{:02d}.png'.format(
                            self.tel, event.r0.event_id, ii))
            else:
                # display integrated event:
                im = event.dl1.tel[self.tel].image[self.channel]

                if self.clean:
                    mask = tailcuts_clean(geom,
                                          im,
                                          picture_thresh=10,
                                          boundary_thresh=7)
                    im[~mask] = 0.0

                disp.image = im

                if self.hillas:
                    try:
                        ellipses = disp.axes.findobj(Ellipse)
                        if len(ellipses) > 0:
                            ellipses[0].remove()

                        params = hillas_parameters(geom, image=im)
                        disp.overlay_moments(params,
                                             color='pink',
                                             lw=3,
                                             with_label=False)
                    except HillasParameterizationError:
                        pass

                if self.display:
                    plt.pause(self.delay)
                if self.write:
                    plt.savefig('CT{:03d}_EV{:010d}.png'.format(
                        self.tel, event.r0.event_id))

        self.log.info("FINISHED READING DATA FILE")

        if disp is None:
            self.log.warning(
                'No events for tel {} were found in {}. Try a '
                'different EventIO file or another telescope'.format(
                    self.tel, self.infile), )

        pass
Esempio n. 23
0
def plot_pedestals(data_file, pedestal_file, run=0, plot_file=None, tel_id=1, offset_value=400, sample_size=1000):
    """
    plot pedestal quantities quantities

    Parameters
    ----------
    data_file:   pedestal run

    pedestal_file:   file with drs4 corrections

    run: run number of data to be corrected

    plot_file:  name of output pdf file

    tel_id: id of the telescope

    offset_value: baseline off_set
    """

    config = {
        "LSTEventSource": {
            "allowed_tels": [1],
            "LSTR0Corrections": {
                "drs4_pedestal_path": pedestal_file,
            },
        }
    }
    # event_reader
    reader = EventSource(data_file, config=Config(config), max_events=None)
    t = np.linspace(2, 37, 36)

    # configuration for the charge integrator
    charge_config = Config(
        {
            "FixedWindowSum": {
                "window_shift": 6,
                "window_width": 12,
                "peak_index": 18,
            }
        }
    )
    # declare the pedestal component
    pedestal = PedestalIntegrator(
        tel_id=tel_id,
        time_sampling_correction_path=None,
        sample_size=sample_size,
        sample_duration=1000000,
        charge_median_cut_outliers=[-10, 10],
        charge_std_cut_outliers=[-10, 10],
        charge_product="FixedWindowSum",
        config=charge_config,
        subarray=reader.subarray,
    )

    for i, event in enumerate(reader):
        if tel_id != event.trigger.tels_with_trigger[0]:
            raise Exception(
                f"Given wrong telescope id {tel_id}, files has id {event.trigger.tels_with_trigger[0]}"
            )

        are_pedestals_calculated = pedestal.calculate_pedestals(event)
        if are_pedestals_calculated:
            ped_data = event.mon.tel[tel_id].pedestal
            break

    camera_geometry = reader.subarray.tels[tel_id].camera.geometry
    camera_geometry = camera_geometry.transform_to(EngineeringCameraFrame())

    if are_pedestals_calculated and plot_file is not None:
        with PdfPages(plot_file) as pdf:

            plt.rc("font", size=15)

            # first figure
            fig = plt.figure(1, figsize=(12, 24))
            plt.tight_layout()
            n_samples = charge_config["FixedWindowSum"]["window_width"]
            fig.suptitle(f"Run {run}, integration on {n_samples} samples", fontsize=25)
            pad = 420

            image = ped_data.charge_median
            mask = ped_data.charge_median_outliers
            for chan in np.arange(2):
                pad += 1
                plt.subplot(pad)
                plt.tight_layout()
                disp = CameraDisplay(camera_geometry)
                mymin = np.median(image[chan]) - 2 * np.std(image[chan])
                mymax = np.median(image[chan]) + 2 * np.std(image[chan])
                disp.set_limits_minmax(mymin, mymax)
                disp.highlight_pixels(mask[chan], linewidth=2)
                disp.image = image[chan]
                disp.cmap = plt.cm.coolwarm
                # disp.axes.text(lposx, 0, f'{channel[chan]} pedestal [ADC]', rotation=90)
                plt.title(f"{channel[chan]} pedestal [ADC]")
                disp.add_colorbar()

            image = ped_data.charge_std
            mask = ped_data.charge_std_outliers
            for chan in np.arange(2):
                pad += 1
                plt.subplot(pad)
                plt.tight_layout()
                disp = CameraDisplay(camera_geometry)
                mymin = np.median(image[chan]) - 2 * np.std(image[chan])
                mymax = np.median(image[chan]) + 2 * np.std(image[chan])
                disp.set_limits_minmax(mymin, mymax)
                disp.highlight_pixels(mask[chan], linewidth=2)
                disp.image = image[chan]
                disp.cmap = plt.cm.coolwarm
                # disp.axes.text(lposx, 0, f'{channel[chan]} pedestal std [ADC]', rotation=90)
                plt.title(f"{channel[chan]} pedestal std [ADC]")
                disp.add_colorbar()

            #  histograms
            for chan in np.arange(2):
                mean_ped = ped_data.charge_mean[chan]
                ped_std = ped_data.charge_std[chan]

                # select good pixels
                select = np.logical_not(mask[chan])

                # fig.suptitle(f"Run {run} channel: {channel[chan]}", fontsize=25)
                pad += 1
                # pedestal charge
                plt.subplot(pad)
                plt.tight_layout()
                plt.ylabel("pixels")
                plt.xlabel(f"{channel[chan]} pedestal")
                median = np.median(mean_ped[select])
                rms = np.std(mean_ped[select])
                label = f"{channel[chan]} Median {median:3.2f}, std {rms:3.2f}"
                plt.hist(mean_ped[select], bins=50, label=label)
                plt.legend()
                pad += 1
                # pedestal std
                plt.subplot(pad)
                plt.ylabel("pixels")
                plt.xlabel(f"{channel[chan]} pedestal std")
                median = np.median(ped_std[select])
                rms = np.std(ped_std[select])
                label = f" Median {median:3.2f}, std {rms:3.2f}"
                plt.hist(ped_std[select], bins=50, label=label)
                plt.legend()

            plt.subplots_adjust(top=0.94, bottom=0.04, right=0.96)

            pdf.savefig()
            plt.close()

            # event_reader
            # reader = EventSource(data_file, config=Config(config), max_events=1000)

            pix = 0
            pad = 420
            offset_value = reader.r0_r1_calibrator.offset.tel[tel_id]

            # plot corrected waveforms of first 8 events
            for i, ev in enumerate(reader):
                for chan in np.arange(2):

                    if pad == 420:
                        # new figure

                        fig = plt.figure(ev.index.event_id * 1000, figsize=(12, 24))
                        fig.suptitle(f"Run {run}, pixel {pix}", fontsize=25)
                        plt.tight_layout()
                    pad += 1
                    plt.subplot(pad)

                    # remove samples at beginning / end of waveform
                    start = reader.r0_r1_calibrator.r1_sample_start.tel[tel_id]
                    end = reader.r0_r1_calibrator.r1_sample_end.tel[tel_id]

                    plt.subplots_adjust(top=0.92)
                    label = f"event {ev.index.event_id}, {channel[chan]}: R0"
                    plt.step(
                        t,
                        ev.r0.tel[tel_id].waveform[chan, pix, start:end],
                        color="blue",
                        label=label,
                    )

                    label = "baseline correction \n + dt corr + interp. spikes"

                    plt.step(
                        t,
                        ev.r1.tel[tel_id].waveform[chan, pix] + offset_value,
                        alpha=0.5,
                        color="green",
                        label=label,
                    )
                    plt.plot([0, 40], [offset_value, offset_value], "k--", label="offset")
                    plt.xlabel("time sample [ns]")
                    plt.ylabel("counts [ADC]")
                    plt.legend()
                    plt.ylim(200, 600)

                if pad == 428:
                    pad = 420
                    plt.subplots_adjust(top=0.92)
                    pdf.savefig()
                    plt.close()

                if i == 8:
                    break

    elif not are_pedestals_calculated:
        log.error("Not able to calculate pedestals or output pdf file not especified.")

    elif plot_file is None:
        log.warning("Not PDF outputfile specified.")
    def finish(self):
        """
        write fit results in h5 file and the check-plots in pdf file
        """

        gain = np.ma.array(self.fit_parameters.T[0], mask=self.fit_error.T)
        quadratic_term = np.ma.array(self.fit_parameters.T[1], mask=self.fit_error.T)

        # give to the badly fitted pixel a median value for the B term
        median_quadratic_term = np.ma.median(quadratic_term, axis=0)

        fill_array = np.ones((constants.N_PIXELS, constants.N_GAINS)) * median_quadratic_term

        quadratic_term_corrected = np.ma.filled(quadratic_term, fill_array)

        with h5py.File(self.output_path, 'w') as hf:
            hf.create_dataset('gain', data=gain.T)
            hf.create_dataset('B_term', data=quadratic_term_corrected.T)
            hf.create_dataset('covariance_matrix', data=self.fit_cov_matrix)
            hf.create_dataset('bad_fit_mask', data=self.fit_error)

            # remember the camera median and the variance per run
            channel = ["HG", "LG"]
            for chan in [0, 1]:
                if self.signal[chan] is not None:
                    hf.create_dataset(f'median_signal_{channel[chan]}', data=np.median(self.signal[chan], axis=0))
                    hf.create_dataset(f'median_variance_{channel[chan]}', data=np.median(self.variance[chan], axis=0))
                    hf.create_dataset(f'runs_{channel[chan]}', data=self.selected_runs[chan])

            hf.create_dataset('runs', data=self.run_list)
            hf.create_dataset('sub_run', data=self.sub_run)

            # plot open pdf
            with PdfPages(self.plot_path) as pdf:
                plt.rc("font", size=15)

                for chan in self.gain_channels:
                    # plot the used runs and their median camera charge
                    fig = plt.figure((chan + 1), figsize=(8, 20))
                    fig.suptitle(f"{channel[chan]} channel", fontsize=25)
                    ax = plt.subplot(2, 1, 1)
                    ax.grid(True)
                    ax.yaxis.set_major_locator(MaxNLocator(integer=True))
                    ax.xaxis.set_major_locator(MaxNLocator(integer=True))
                    ax.yaxis.set_major_locator(plt.MultipleLocator(1))

                    plt.plot(np.median(self.signal[chan], axis=0), self.selected_runs[chan], "o")
                    plt.xlabel(r'$\mathrm{\overline{Q}-\overline{ped}}$ [ADC]')
                    plt.ylabel(r'Runs used in the fit')

                    plt.subplot(2, 1, 2)
                    camera = load_camera_geometry()
                    camera = camera.transform_to(EngineeringCameraFrame())
                    disp = CameraDisplay(camera)
                    image = self.fit_parameters.T[1].T * 100
                    mymin = np.median(image[chan]) - 3 * np.std(image[chan])
                    mymax = np.median(image[chan]) + 3 * np.std(image[chan])
                    disp.set_limits_minmax(mymin, mymax)
                    mask = np.where(self.fit_error[chan] == 1)[0]
                    disp.highlight_pixels(mask, linewidth=2.5, color="green")
                    disp.image = image[chan]
                    disp.cmap = plt.cm.coolwarm
                    plt.title(f"{channel[chan]} Fitted B values [%]")
                    disp.add_colorbar()
                    plt.tight_layout()
                    pdf.savefig()

                    # plot the fit results and residuals for four arbitrary  pixels
                    fig = plt.figure((chan + 1) * 10, figsize=(11, 22))
                    fig.suptitle(f"{channel[chan]} channel", fontsize=25)

                    pad = 0
                    for pix in [0, 600, 1200, 1800]:
                        pad += 1
                        plt.subplot(4, 2, pad)
                        plt.grid(which='minor')

                        mask = self.unusable_pixels[chan][pix]
                        sig = np.ma.array(self.signal[chan][pix], mask=mask).compressed()
                        var = np.ma.array(self.variance[chan][pix], mask=mask).compressed()
                        popt = self.fit_parameters[chan, pix]

                        # plot points
                        plt.plot(sig, var, 'o', color="C0")

                        # plot fit
                        min_x = min(1000, np.min(sig) * 0.9)
                        max_x = max(10000, np.max(sig) * 1.1)
                        x = np.arange(np.min(sig), np.max(sig))

                        plt.plot(x, quadratic_fit(x, *popt), '--', color="C1",
                                 label=f'Pixel {pix}:\ng={popt[0]:5.2f} [ADC/pe] , B={popt[1]:5.3f}')
                        plt.xlim(min_x, max_x)
                        plt.xlabel('Q-ped [ADC]')
                        plt.ylabel(r'$\mathrm{\sigma_Q^2-\sigma_{ped}^2}$ [$ADC^2$]')
                        plt.xscale('log')
                        plt.yscale('log')
                        plt.legend()

                        # plot residuals
                        pad += 1
                        plt.subplot(4, 2, pad)
                        plt.grid(which='both', axis='both')

                        popt = self.fit_parameters[chan, pix]
                        plt.plot(sig, (quadratic_fit(sig, *popt) - var) / var * 100, 'o', color="C0")
                        plt.xlim(min_x, max_x)
                        plt.xscale('log')
                        plt.ylabel('fit residuals %')
                        plt.xlabel('Q-ped [ADC]')
                        plt.hlines(0, 0, np.max(sig), linestyle='dashed', color="black")

                    plt.tight_layout()
                    pdf.savefig()
Esempio n. 25
0
def plot(event, telid, chan, extractor_name):
    # Extract required images
    dl0 = event.dl0.tel[telid].pe_samples[chan]

    t_pe = event.mc.tel[telid].photo_electron_image
    dl1 = event.dl1.tel[telid].image[chan]
    max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
    max_charges = np.max(dl0, axis=1)
    max_pix = int(np.argmax(max_charges))
    min_pix = int(np.argmin(max_charges))

    geom = event.inst.subarray.tel[telid].camera
    nei = geom.neighbors

    # Get Neighbours
    max_pixel_nei = nei[max_pix]
    min_pixel_nei = nei[min_pix]

    # Get Windows
    windows = event.dl1.tel[telid].extracted_samples[chan]
    length = np.sum(windows, axis=1)
    start = np.argmax(windows, axis=1)
    end = start + length - 1

    # Draw figures
    ax_max_nei = {}
    ax_min_nei = {}
    fig_waveforms = plt.figure(figsize=(18, 9))
    fig_waveforms.subplots_adjust(hspace=.5)
    fig_camera = plt.figure(figsize=(15, 12))

    ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
    ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
    ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
    ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
    ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
    ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
    ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
    ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

    ax_img_nei = fig_camera.add_subplot(2, 2, 1)
    ax_img_max = fig_camera.add_subplot(2, 2, 2)
    ax_img_true = fig_camera.add_subplot(2, 2, 3)
    ax_img_cal = fig_camera.add_subplot(2, 2, 4)

    # Draw max pixel traces
    ax_max_pix.plot(dl0[max_pix])
    ax_max_pix.set_xlabel("Time (ns)")
    ax_max_pix.set_ylabel("DL0 Samples (ADC)")
    ax_max_pix.set_title("(Max) Pixel: {}, True: {}, Measured = {:.3f}"
                         .format(max_pix, t_pe[max_pix], dl1[max_pix]))
    max_ylim = ax_max_pix.get_ylim()
    ax_max_pix.plot([start[max_pix], start[max_pix]],
                    ax_max_pix.get_ylim(), color='r', alpha=1)
    ax_max_pix.plot([end[max_pix], end[max_pix]],
                    ax_max_pix.get_ylim(), color='r', alpha=1)
    for i, ax in ax_max_nei.items():
        if len(max_pixel_nei) > i:
            pix = max_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title("(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                         .format(pix, t_pe[pix], dl1[pix]))
            ax.set_ylim(max_ylim)
            ax.plot([start[pix], start[pix]],
                    ax.get_ylim(), color='r', alpha=1)
            ax.plot([end[pix], end[pix]],
                    ax.get_ylim(), color='r', alpha=1)

    # Draw min pixel traces
    ax_min_pix.plot(dl0[min_pix])
    ax_min_pix.set_xlabel("Time (ns)")
    ax_min_pix.set_ylabel("DL0 Samples (ADC)")
    ax_min_pix.set_title("(Min) Pixel: {}, True: {}, Measured = {:.3f}"
                         .format(min_pix, t_pe[min_pix], dl1[min_pix]))
    ax_min_pix.set_ylim(max_ylim)
    ax_min_pix.plot([start[min_pix], start[min_pix]],
                    ax_min_pix.get_ylim(), color='r', alpha=1)
    ax_min_pix.plot([end[min_pix], end[min_pix]],
                    ax_min_pix.get_ylim(), color='r', alpha=1)
    for i, ax in ax_min_nei.items():
        if len(min_pixel_nei) > i:
            pix = min_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title("(Min Nei) Pixel: {}, True: {}, Measured = {:.3f}"
                         .format(pix, t_pe[pix], dl1[pix]))
            ax.set_ylim(max_ylim)
            ax.plot([start[pix], start[pix]],
                    ax.get_ylim(), color='r', alpha=1)
            ax.plot([end[pix], end[pix]],
                    ax.get_ylim(), color='r', alpha=1)

    # Draw cameras
    nei_camera = np.zeros_like(max_charges, dtype=np.int)
    nei_camera[min_pixel_nei] = 2
    nei_camera[min_pix] = 1
    nei_camera[max_pixel_nei] = 3
    nei_camera[max_pix] = 4
    camera = CameraDisplay(geom, ax=ax_img_nei)
    camera.image = nei_camera
    ax_img_nei.set_title("Neighbour Map")
    ax_img_nei.annotate("Pixel: {}".format(max_pix),
                        xy=(geom.pix_x.value[max_pix],
                            geom.pix_y.value[max_pix]),
                        xycoords='data', xytext=(0.05, 0.98),
                        textcoords='axes fraction',
                        arrowprops=dict(facecolor='red', width=2,
                                        alpha=0.4),
                        horizontalalignment='left',
                        verticalalignment='top')
    ax_img_nei.annotate("Pixel: {}".format(min_pix),
                        xy=(geom.pix_x.value[min_pix],
                            geom.pix_y.value[min_pix]),
                        xycoords='data', xytext=(0.05, 0.94),
                        textcoords='axes fraction',
                        arrowprops=dict(facecolor='orange', width=2,
                                        alpha=0.4),
                        horizontalalignment='left',
                        verticalalignment='top')
    camera = CameraDisplay(geom, ax=ax_img_max)
    camera.image = dl0[:, max_time]
    camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
    ax_img_max.set_title("Max Timeslice (T = {})".format(max_time))
    ax_img_max.annotate("Pixel: {}".format(max_pix),
                        xy=(geom.pix_x.value[max_pix],
                            geom.pix_y.value[max_pix]),
                        xycoords='data', xytext=(0.05, 0.98),
                        textcoords='axes fraction',
                        arrowprops=dict(facecolor='red', width=2,
                                        alpha=0.4),
                        horizontalalignment='left',
                        verticalalignment='top')
    ax_img_max.annotate("Pixel: {}".format(min_pix),
                        xy=(geom.pix_x.value[min_pix],
                            geom.pix_y.value[min_pix]),
                        xycoords='data', xytext=(0.05, 0.94),
                        textcoords='axes fraction',
                        arrowprops=dict(facecolor='orange', width=2,
                                        alpha=0.4),
                        horizontalalignment='left',
                        verticalalignment='top')

    camera = CameraDisplay(geom, ax=ax_img_true)
    camera.image = t_pe
    camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
    ax_img_true.set_title("True Charge")
    ax_img_true.annotate("Pixel: {}".format(max_pix),
                         xy=(geom.pix_x.value[max_pix],
                             geom.pix_y.value[max_pix]),
                         xycoords='data', xytext=(0.05, 0.98),
                         textcoords='axes fraction',
                         arrowprops=dict(facecolor='red', width=2,
                                         alpha=0.4),
                         horizontalalignment='left',
                         verticalalignment='top')
    ax_img_true.annotate("Pixel: {}".format(min_pix),
                         xy=(geom.pix_x.value[min_pix],
                             geom.pix_y.value[min_pix]),
                         xycoords='data', xytext=(0.05, 0.94),
                         textcoords='axes fraction',
                         arrowprops=dict(facecolor='orange', width=2,
                                         alpha=0.4),
                         horizontalalignment='left',
                         verticalalignment='top')

    camera = CameraDisplay(geom, ax=ax_img_cal)
    camera.image = dl1
    camera.add_colorbar(ax=ax_img_cal,
                        label="Calib Charge (Photo-electrons)")
    ax_img_cal.set_title("Charge (integrator={})".format(extractor_name))
    ax_img_cal.annotate("Pixel: {}".format(max_pix),
                        xy=(geom.pix_x.value[max_pix],
                            geom.pix_y.value[max_pix]),
                        xycoords='data', xytext=(0.05, 0.98),
                        textcoords='axes fraction',
                        arrowprops=dict(facecolor='red', width=2,
                                        alpha=0.4),
                        horizontalalignment='left',
                        verticalalignment='top')
    ax_img_cal.annotate("Pixel: {}".format(min_pix),
                        xy=(geom.pix_x.value[min_pix],
                            geom.pix_y.value[min_pix]),
                        xycoords='data', xytext=(0.05, 0.94),
                        textcoords='axes fraction',
                        arrowprops=dict(facecolor='orange', width=2,
                                        alpha=0.4),
                        horizontalalignment='left',
                        verticalalignment='top')

    fig_waveforms.suptitle("Integrator = {}".format(extractor_name))
    fig_camera.suptitle("Camera = {}".format(geom.cam_id))

    plt.show()
# just to directly get the cam geom
subarray = SimTelEventSource(input_url=path).subarray
geom = subarray.tel[1].camera.geometry

fig, ax = plt.subplots()

im_disp = CameraDisplay(geom, ax=ax)
fig.show()
im_disp.add_colorbar()

for e in SimTelFile(path).iter_mc_events():

    true_pe = e['photoelectrons'].get(0)

    if true_pe is not None:
        mc_shower = e['mc_shower']
        energy = mc_shower['energy']
        event_id = e['event_id']
        pe = true_pe['photoelectrons']
        time = np.empty(1440)
        time[true_pe['pixel_id']] = true_pe['time']
        max_pe = int(np.max(pe))

        im_disp.axes.set_title(f'{event_id}: {energy:.2f} TeV')
        im_disp.image = pe

        if max_pe >= 100 and max_pe < 1000:
            plt.savefig(f"build/true_pe_{max_pe:03d}.png", dpi=500)

plt.savefig("build/true_pe.png", dpi=500)
Esempio n. 27
0
def plot_pedestals(data_file,
                   pedestal_file,
                   run=0,
                   plot_file="none",
                   tel_id=1,
                   offset_value=400):
    """
     plot pedestal quantities quantities

     Parameters
     ----------
     data_file:   pedestal run

     pedestal_file:   file with drs4 corrections

     run: run number of data to be corrected

     plot_file:  name of output pdf file

     tel_id: id of the telescope

     offset_value: baseline off_set
     """

    # plot open pdf
    if plot_file != "none":
        pp = PdfPages(plot_file)

    plt.rc('font', size=15)

    # r0 calibrator
    r0_calib = LSTR0Corrections(pedestal_path=pedestal_file,
                                offset=offset_value,
                                tel_id=tel_id)

    # event_reader
    reader = event_source(data_file, max_events=1000)
    t = np.linspace(2, 37, 36)

    # configuration for the charge integrator
    charge_config = Config(
        {"FixedWindowSum": {
            "window_start": 12,
            "window_width": 12,
        }})
    # declare the pedestal component
    pedestal = PedestalIntegrator(tel_id=tel_id,
                                  sample_size=1000,
                                  sample_duration=1000000,
                                  charge_median_cut_outliers=[-10, 10],
                                  charge_std_cut_outliers=[-10, 10],
                                  charge_product="FixedWindowSum",
                                  config=charge_config,
                                  subarray=reader.subarray)

    for i, event in enumerate(reader):
        if tel_id != event.r0.tels_with_data[0]:
            raise Exception(
                f"Given wrong telescope id {tel_id}, files has id {event.r0.tels_with_data[0]}"
            )

        # move from R0 to R1
        r0_calib.calibrate(event)

        ok = pedestal.calculate_pedestals(event)
        if ok:
            ped_data = event.mon.tel[tel_id].pedestal
            break

    camera_geometry = reader.subarray.tels[tel_id].camera.geometry
    camera_geometry = camera_geometry.transform_to(EngineeringCameraFrame())
    # plot open pdf
    if plot_file != "none":
        pp = PdfPages(plot_file)

    plt.rc('font', size=15)

    ### first figure
    fig = plt.figure(1, figsize=(12, 24))
    plt.tight_layout()
    n_samples = charge_config["FixedWindowSum"]['window_width']
    fig.suptitle(f"Run {run}, integration on {n_samples} samples", fontsize=25)
    pad = 420

    image = ped_data.charge_median
    mask = ped_data.charge_median_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera_geometry)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        # disp.axes.text(lposx, 0, f'{channel[chan]} pedestal [ADC]', rotation=90)
        plt.title(f'{channel[chan]} pedestal [ADC]')
        disp.add_colorbar()

    image = ped_data.charge_std
    mask = ped_data.charge_std_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera_geometry)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        # disp.axes.text(lposx, 0, f'{channel[chan]} pedestal std [ADC]', rotation=90)
        plt.title(f'{channel[chan]} pedestal std [ADC]')
        disp.add_colorbar()

    ###  histograms
    for chan in np.arange(2):
        mean_ped = ped_data.charge_mean[chan]
        ped_std = ped_data.charge_std[chan]

        # select good pixels
        select = np.logical_not(mask[chan])

        #fig.suptitle(f"Run {run} channel: {channel[chan]}", fontsize=25)
        pad += 1
        # pedestal charge
        plt.subplot(pad)
        plt.tight_layout()
        plt.ylabel('pixels')
        plt.xlabel(f'{channel[chan]} pedestal')
        median = np.median(mean_ped[select])
        rms = np.std(mean_ped[select])
        label = f"{channel[chan]} Median {median:3.2f}, std {rms:3.2f}"
        plt.hist(mean_ped[select], bins=50, label=label)
        plt.legend()
        pad += 1
        # pedestal std
        plt.subplot(pad)
        plt.ylabel('pixels')
        plt.xlabel(f'{channel[chan]} pedestal std')
        median = np.median(ped_std[select])
        rms = np.std(ped_std[select])
        label = f" Median {median:3.2f}, std {rms:3.2f}"
        plt.hist(ped_std[select], bins=50, label=label)
        plt.legend()

    plt.subplots_adjust(top=0.94)
    if plot_file != "none":

        pp.savefig()

    pix = 0
    pad = 420
    # plot corrected waveforms of first 8 events
    for i, ev in enumerate(reader):
        for chan in np.arange(2):

            if pad == 420:
                # new figure

                fig = plt.figure(ev.index.event_id, figsize=(12, 24))
                fig.suptitle(f"Run {run}, pixel {pix}", fontsize=25)
                plt.tight_layout()
            pad += 1
            plt.subplot(pad)

            plt.subplots_adjust(top=0.92)
            label = f"event {ev.index.event_id}, {channel[chan]}: R0"
            plt.step(t,
                     ev.r0.tel[tel_id].waveform[chan, pix, 2:38],
                     color="blue",
                     label=label)

            r0_calib.subtract_pedestal(ev, tel_id)
            label = "+ pedestal substraction"
            plt.step(t,
                     ev.r1.tel[tel_id].waveform[chan, pix, 2:38],
                     color="red",
                     alpha=0.5,
                     label=label)

            r0_calib.time_lapse_corr(ev, tel_id)
            r0_calib.interpolate_spikes(ev, tel_id)
            label = "+ dt corr + interp. spikes"
            plt.step(t,
                     ev.r1.tel[tel_id].waveform[chan, pix, 2:38],
                     alpha=0.5,
                     color="green",
                     label=label)
            plt.plot([0, 40], [offset_value, offset_value],
                     'k--',
                     label="offset")
            plt.xlabel("time sample [ns]")
            plt.ylabel("counts [ADC]")
            plt.legend()
            plt.ylim([-50, 500])

        if plot_file != "none" and pad == 428:
            pad = 420
            plt.subplots_adjust(top=0.92)
            pp.savefig()

        if i == 8:
            break

    if plot_file != "none":
        pp.close()
Esempio n. 28
0
    ################## 
    f,axs = plt.subplots(ncols=2,figsize=(12,6))
    blankam1 = np.zeros(1855)
    blankam2 = np.zeros(1855)
    
    blankam2[pix_ids]=gains_2g
    
    # ~ blankam1[pix_ids]=res_2g.T[0]
    # ~ blankam2[pix_ids]=res_2g.T[1]


    disp2 = CameraDisplay(geom,title="gains (2 gauss mes)",ax=axs[1])

    disp2.add_colorbar(ax=axs[1])
    disp2.set_limits_minmax(zmin=gains_2g.min()-5,zmax=gains_2g.max()+5)
    disp2.image = blankam2
    
    

    # ~ pix_HVs     = get_pixs_HV( get_config_xml2(file_path) )
    d= {param_names[0] : res_2g.T[0], \
        param_names[1] : res_2g.T[1], \
        param_names[2] : res_2g.T[2], \
        param_names[3] : res_2g.T[3], \
        param_names[4] : res_2g.T[4], \
        'gain'         : gains_2g   , \
        'pix_num'      : modpix     }
    df = pd.DataFrame(d)
    sns.set()
    disp_p = 0
    
Esempio n. 29
0
	p2 = -5.0e-3
	p4 = -1.25e-7
	p6 = -6.25e-12
	p8 = -3.90625e-16
	p10 = -2.734375e-20
	return (p2 * x ** 2 + p4 * x ** 4 + p6 * x ** 6 + p8 * x ** 8 + p10 * x ** 10)

pixel_dat = np.loadtxt('CHEC-S_camera_full_19-02-2018-1.dat', unpack=True)

z_focalplane = []
z_diff = []
for n, i in enumerate(pixel_dat[0]):
    xi = i/10
    yi = pixel_dat[1][n]/10
    zi = focal_plane(np.sqrt(xi ** 2 + yi ** 2))
    z_focalplane.append(zi)
    z_diff.append(zi-pixel_dat[2][n]/10)

print(max(z_diff))

geom = CameraGeometry.from_name("CHEC")
disp = CameraDisplay(geom)
# disp.set_limits_minmax(0, 300)
cb = disp.add_colorbar()
print(cb)
disp.image = z_diff

fig2= plt.figure(2)
plt.hist(z_diff)

plt.show()
Esempio n. 30
0
    def plot(self, input_file, event, telid, chan, extractor_name, nei):
        # Extract required images
        dl0 = event.dl0.tel[telid].adc_samples[chan]
        t_pe = event.mc.tel[telid].photo_electron_image
        dl1 = event.dl1.tel[telid].image[chan]
        max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
        max_charges = np.max(dl0, axis=1)
        max_pix = int(np.argmax(max_charges))
        min_pix = int(np.argmin(max_charges))

        geom = CameraGeometry.guess(*event.inst.pixel_pos[telid],
                                    event.inst.optical_foclen[telid])

        # Get Neighbours
        max_pixel_nei = nei[max_pix]
        min_pixel_nei = nei[min_pix]

        # Get Windows
        windows = event.dl1.tel[telid].extracted_samples[chan]
        length = np.sum(windows, axis=1)
        start = np.argmax(windows, axis=1)
        end = start + length

        # Draw figures
        ax_max_nei = {}
        ax_min_nei = {}
        fig_waveforms = plt.figure(figsize=(18, 9))
        fig_waveforms.subplots_adjust(hspace=.5)
        fig_camera = plt.figure(figsize=(15, 12))

        ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
        ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
        ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
        ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
        ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
        ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
        ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
        ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

        ax_img_nei = fig_camera.add_subplot(2, 2, 1)
        ax_img_max = fig_camera.add_subplot(2, 2, 2)
        ax_img_true = fig_camera.add_subplot(2, 2, 3)
        ax_img_cal = fig_camera.add_subplot(2, 2, 4)

        # Draw max pixel traces
        ax_max_pix.plot(dl0[max_pix])
        ax_max_pix.set_xlabel("Time (ns)")
        ax_max_pix.set_ylabel("DL0 Samples (ADC)")
        ax_max_pix.set_title(
            "(Max) Pixel: {}, True: {}, Measured = {:.3f}".format(
                max_pix, t_pe[max_pix], dl1[max_pix]))
        max_ylim = ax_max_pix.get_ylim()
        ax_max_pix.plot([start[max_pix], start[max_pix]],
                        ax_max_pix.get_ylim(),
                        color='r',
                        alpha=1)
        ax_max_pix.plot([end[max_pix], end[max_pix]],
                        ax_max_pix.get_ylim(),
                        color='r',
                        alpha=1)
        for i, ax in ax_max_nei.items():
            if len(max_pixel_nei) > i:
                pix = max_pixel_nei[i]
                ax.plot(dl0[pix])
                ax.set_xlabel("Time (ns)")
                ax.set_ylabel("DL0 Samples (ADC)")
                ax.set_title(
                    "(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}".format(
                        pix, t_pe[pix], dl1[pix]))
                ax.set_ylim(max_ylim)
                ax.plot([start[pix], start[pix]],
                        ax.get_ylim(),
                        color='r',
                        alpha=1)
                ax.plot([end[pix], end[pix]],
                        ax.get_ylim(),
                        color='r',
                        alpha=1)

        # Draw min pixel traces
        ax_min_pix.plot(dl0[min_pix])
        ax_min_pix.set_xlabel("Time (ns)")
        ax_min_pix.set_ylabel("DL0 Samples (ADC)")
        ax_min_pix.set_title(
            "(Min) Pixel: {}, True: {}, Measured = {:.3f}".format(
                min_pix, t_pe[min_pix], dl1[min_pix]))
        ax_min_pix.set_ylim(max_ylim)
        ax_min_pix.plot([start[min_pix], start[min_pix]],
                        ax_min_pix.get_ylim(),
                        color='r',
                        alpha=1)
        ax_min_pix.plot([end[min_pix], end[min_pix]],
                        ax_min_pix.get_ylim(),
                        color='r',
                        alpha=1)
        for i, ax in ax_min_nei.items():
            if len(min_pixel_nei) > i:
                pix = min_pixel_nei[i]
                ax.plot(dl0[pix])
                ax.set_xlabel("Time (ns)")
                ax.set_ylabel("DL0 Samples (ADC)")
                ax.set_title(
                    "(Min Nei) Pixel: {}, True: {}, Measured = {:.3f}".format(
                        pix, t_pe[pix], dl1[pix]))
                ax.set_ylim(max_ylim)
                ax.plot([start[pix], start[pix]],
                        ax.get_ylim(),
                        color='r',
                        alpha=1)
                ax.plot([end[pix], end[pix]],
                        ax.get_ylim(),
                        color='r',
                        alpha=1)

        # Draw cameras
        nei_camera = np.zeros_like(max_charges, dtype=np.int)
        nei_camera[min_pixel_nei] = 2
        nei_camera[min_pix] = 1
        nei_camera[max_pixel_nei] = 3
        nei_camera[max_pix] = 4
        camera = CameraDisplay(geom, ax=ax_img_nei)
        camera.image = nei_camera
        camera.cmap = plt.cm.viridis
        ax_img_nei.set_title("Neighbour Map")
        ax_img_nei.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data',
                            xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red',
                                            width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_nei.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data',
                            xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange',
                                            width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        camera = CameraDisplay(geom, ax=ax_img_max)
        camera.image = dl0[:, max_time]
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
        ax_img_max.set_title("Max Timeslice (T = {})".format(max_time))
        ax_img_max.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data',
                            xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red',
                                            width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_max.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data',
                            xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange',
                                            width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')

        camera = CameraDisplay(geom, ax=ax_img_true)
        camera.image = t_pe
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
        ax_img_true.set_title("True Charge")
        ax_img_true.annotate("Pixel: {}".format(max_pix),
                             xy=(geom.pix_x.value[max_pix],
                                 geom.pix_y.value[max_pix]),
                             xycoords='data',
                             xytext=(0.05, 0.98),
                             textcoords='axes fraction',
                             arrowprops=dict(facecolor='red',
                                             width=2,
                                             alpha=0.4),
                             horizontalalignment='left',
                             verticalalignment='top')
        ax_img_true.annotate("Pixel: {}".format(min_pix),
                             xy=(geom.pix_x.value[min_pix],
                                 geom.pix_y.value[min_pix]),
                             xycoords='data',
                             xytext=(0.05, 0.94),
                             textcoords='axes fraction',
                             arrowprops=dict(facecolor='orange',
                                             width=2,
                                             alpha=0.4),
                             horizontalalignment='left',
                             verticalalignment='top')

        camera = CameraDisplay(geom, ax=ax_img_cal)
        camera.image = dl1
        camera.cmap = plt.cm.viridis
        camera.add_colorbar(ax=ax_img_cal,
                            label="Calib Charge (Photo-electrons)")
        ax_img_cal.set_title("Charge (integrator={})".format(extractor_name))
        ax_img_cal.annotate("Pixel: {}".format(max_pix),
                            xy=(geom.pix_x.value[max_pix],
                                geom.pix_y.value[max_pix]),
                            xycoords='data',
                            xytext=(0.05, 0.98),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='red',
                                            width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')
        ax_img_cal.annotate("Pixel: {}".format(min_pix),
                            xy=(geom.pix_x.value[min_pix],
                                geom.pix_y.value[min_pix]),
                            xycoords='data',
                            xytext=(0.05, 0.94),
                            textcoords='axes fraction',
                            arrowprops=dict(facecolor='orange',
                                            width=2,
                                            alpha=0.4),
                            horizontalalignment='left',
                            verticalalignment='top')

        fig_waveforms.suptitle("Integrator = {}".format(extractor_name))
        fig_camera.suptitle("Camera = {}".format(geom.cam_id))

        waveform_output_name = "e{}_t{}_c{}_extractor{}_waveform.pdf"\
            .format(event.count, telid, chan, extractor_name)
        camera_output_name = "e{}_t{}_c{}_extractor{}_camera.pdf"\
            .format(event.count, telid, chan, extractor_name)

        output_dir = self.output_dir
        if output_dir is None:
            output_dir = input_file.output_directory
        output_dir = os.path.join(output_dir, self.name)
        if not os.path.exists(output_dir):
            self.log.info("Creating directory: {}".format(output_dir))
            os.makedirs(output_dir)

        waveform_output_path = os.path.join(output_dir, waveform_output_name)
        self.log.info("Saving: {}".format(waveform_output_path))
        fig_waveforms.savefig(waveform_output_path,
                              format='pdf',
                              bbox_inches='tight')

        camera_output_path = os.path.join(output_dir, camera_output_name)
        self.log.info("Saving: {}".format(camera_output_path))
        fig_camera.savefig(camera_output_path,
                           format='pdf',
                           bbox_inches='tight')
Esempio n. 31
0
inferno = plt.get_cmap('inferno')
inferno.set_bad('gray')
rdbu = plt.get_cmap('RdBu_r')
rdbu.set_bad('gray')

for i in range(2):
    fig, axs = plt.subplots(1, 2, figsize=(5, 2), constrained_layout=True)

    if i == 1:
        clean = tailcuts_clean(cam, img, 9, 3)
        img[~clean] = np.nan
        time[~clean] = np.nan

    disp = CameraDisplay(cam, ax=axs[0])
    disp.image = img
    disp.cmap = inferno
    disp.add_colorbar(ax=axs[0])
    disp.set_limits_minmax(0, 45)
    disp.pixels.set_rasterized(True)

    disp2 = CameraDisplay(cam, ax=axs[1])
    disp2.image = time
    disp2.cmap = rdbu
    disp2.set_limits_minmax(10, 40)
    disp2.add_colorbar(ax=axs[1])
    disp2.pixels.set_rasterized(True)

    axs[0].set_title('\# Photons')
    axs[1].set_title('Time / ns')
Esempio n. 32
0
def plot_all(ped_data, ff_data, calib_data, run=0, plot_file="none"):
    """
     plot camera calibration quantities

     Parameters
     ----------
     ped_data:   pedestal container PedestalContainer()

     ff_data:    flat-field container FlatFieldContainer()

     calib_data: calibration container WaveformCalibrationContainer()

     """
    camera = CameraGeometry.from_name("LSTCam", 2)

    # plot open pdf
    if plot_file != "none":
        pp = PdfPages(plot_file)

    plt.rc('font', size=15)

    ### first figure
    fig = plt.figure(1, figsize=(12, 24))
    plt.tight_layout()
    fig.suptitle(f"Run {run}", fontsize=25)
    pad = 420
    image = ff_data.charge_median
    mask = ff_data.charge_median_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        #disp.axes.text(lposx, 0, f'{channel[chan]} signal charge (ADC)', rotation=90)
        plt.title(f'{channel[chan]} signal charge [ADC]')
        disp.add_colorbar()

    image = ff_data.charge_std
    mask = ff_data.charge_std_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        #disp.axes.text(lposx, 0, f'{channel[chan]} signal std [ADC]', rotation=90)
        plt.title(f'{channel[chan]} signal std [ADC]')
        disp.add_colorbar()

    image = ped_data.charge_median
    mask = ped_data.charge_median_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        #disp.axes.text(lposx, 0, f'{channel[chan]} pedestal [ADC]', rotation=90)
        plt.title(f'{channel[chan]} pedestal [ADC]')
        disp.add_colorbar()

    image = ped_data.charge_std
    mask = ped_data.charge_std_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        #disp.axes.text(lposx, 0, f'{channel[chan]} pedestal std [ADC]', rotation=90)
        plt.title(f'{channel[chan]} pedestal std [ADC]')
        disp.add_colorbar()

    plt.subplots_adjust(top=0.92)

    if plot_file != "none":
        pp.savefig()

    ### second figure
    fig = plt.figure(2, figsize=(12, 24))
    plt.tight_layout()
    fig.suptitle(f"Run {run}", fontsize=25)
    pad = 420

    # time
    image = ff_data.time_median
    mask = ff_data.time_median_outliers
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        #disp.axes.text(lposx, 0, f'{channel[chan]} time', rotation=90)
        plt.title(f'{channel[chan]} time')
        disp.add_colorbar()

    image = ff_data.relative_gain_median
    mask = calib_data.unusable_pixels
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        disp.highlight_pixels(mask[chan], linewidth=2)
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.image = image[chan]
        disp.cmap = plt.cm.coolwarm
        disp.set_limits_minmax(0.7, 1.3)
        plt.title(f'{channel[chan]} relative gain')
        #disp.axes.text(lposx, 0, f'{channel[chan]} relative gain', rotation=90)
        disp.add_colorbar()

    # pe
    image = calib_data.n_pe
    mask = calib_data.unusable_pixels
    image = np.where(np.isnan(image), 0, image)
    for chan in (np.arange(2)):
        pad += 1
        plt.subplot(pad)
        plt.tight_layout()
        disp = CameraDisplay(camera)
        disp.highlight_pixels(mask[chan], linewidth=2)
        disp.image = image[chan]
        mymin = np.median(image[chan]) - 2 * np.std(image[chan])
        mymax = np.median(image[chan]) + 2 * np.std(image[chan])
        disp.set_limits_minmax(mymin, mymax)
        disp.cmap = plt.cm.coolwarm
        plt.title(f'{channel[chan]} photon-electrons')
        #disp.axes.text(lposx, 0, f'{channel[chan]} photon-electrons', rotation=90)
        disp.add_colorbar()

    # pe histogram
    pad += 1
    plt.subplot(pad)
    plt.tight_layout()
    for chan in np.arange(2):
        n_pe = calib_data.n_pe[chan]
        # select good pixels
        select = np.logical_not(mask[chan])
        median = int(np.median(n_pe[select]))
        rms = np.std(n_pe[select])
        mymin = median - 4 * rms
        mymax = median + 4 * rms
        label = f"{channel[chan]} Median {median:3.2f}, std {rms:5.2f}"
        plt.hist(n_pe[select],
                 label=label,
                 histtype='step',
                 range=(mymin, mymax),
                 bins=50,
                 stacked=True,
                 alpha=0.5,
                 fill=True)
        plt.legend()
    plt.xlabel(f'pe', fontsize=20)
    plt.ylabel('pixels', fontsize=20)

    # pe scatter plot
    pad += 1
    plt.subplot(pad)
    plt.tight_layout()
    HG = calib_data.n_pe[0]
    LG = calib_data.n_pe[1]
    HG = np.where(np.isnan(HG), 0, HG)
    LG = np.where(np.isnan(LG), 0, LG)
    mymin = np.median(LG) - 2 * np.std(LG)
    mymax = np.median(LG) + 2 * np.std(LG)
    plt.hist2d(LG, HG, bins=[100, 100])
    plt.xlabel("LG", fontsize=20)
    plt.ylabel("HG", fontsize=20)

    x = np.arange(mymin, mymax)
    plt.plot(x, x)
    plt.ylim(mymin, mymax)
    plt.xlim(mymin, mymax)
    plt.subplots_adjust(top=0.92)
    if plot_file != "none":
        pp.savefig()

    ### figures 3 and 4 : histograms
    for chan in np.arange(2):
        n_pe = calib_data.n_pe[chan]

        gain_median = ff_data.relative_gain_median[chan]
        #charge_median = ff_data.charge_median[chan]
        charge_mean = ff_data.charge_mean[chan]
        charge_std = ff_data.charge_std[chan]
        #median_ped = ped_data.charge_median[chan]
        mean_ped = ped_data.charge_mean[chan]
        ped_std = ped_data.charge_std[chan]

        # select good pixels
        select = np.logical_not(mask[chan])
        fig = plt.figure(chan + 10, figsize=(12, 18))
        fig.tight_layout(rect=[0, 0.03, 1, 0.95])

        fig.suptitle(f"Run {run} channel: {channel[chan]}", fontsize=25)

        # charge
        plt.subplot(321)
        plt.tight_layout()
        median = int(np.median(charge_mean[select]))
        rms = np.std(charge_mean[select])
        label = f"Median {median:3.2f}, std {rms:5.0f}"
        plt.xlabel('charge (ADC)', fontsize=20)
        plt.ylabel('pixels', fontsize=20)
        plt.hist(charge_mean[select], bins=50, label=label)
        plt.legend()

        plt.subplot(322)
        plt.tight_layout()
        plt.ylabel('pixels', fontsize=20)
        plt.xlabel('charge std', fontsize=20)
        median = np.median(charge_std[select])
        rms = np.std(charge_std[select])
        label = f"Median {median:3.2f}, std {rms:3.2f}"
        plt.hist(charge_std[select], bins=50, label=label)
        plt.legend()

        # pedestal charge
        plt.subplot(323)
        plt.tight_layout()
        plt.ylabel('pixels', fontsize=20)
        plt.xlabel('pedestal', fontsize=20)
        median = np.median(mean_ped[select])
        rms = np.std(mean_ped[select])
        label = f"Median {median:3.2f}, std {rms:3.2f}"
        plt.hist(mean_ped[select], bins=50, label=label)
        plt.legend()

        # pedestal std
        plt.subplot(324)
        plt.ylabel('pixels', fontsize=20)
        plt.xlabel('pedestal std', fontsize=20)
        median = np.median(ped_std[select])
        rms = np.std(ped_std[select])
        label = f"Median {median:3.2f}, std {rms:3.2f}"
        plt.hist(ped_std[select], bins=50, label=label)
        plt.legend()

        # relative gain
        plt.subplot(325)
        plt.tight_layout()
        plt.ylabel('pixels', fontsize=20)
        plt.xlabel('relative gain', fontsize=20)
        median = np.median(gain_median[select])
        rms = np.std(gain_median[select])
        label = f"Relative gain {median:3.2f}, std {rms:5.2f}"
        plt.hist(gain_median[select], bins=50, label=label)
        plt.legend()

        # photon electrons
        plt.subplot(326)
        plt.tight_layout()
        plt.ylabel('pixels', fontsize=20)
        plt.xlabel('pe', fontsize=20)
        median = np.median(n_pe[select])
        rms = np.std(n_pe[select])
        label = f"Median {median:3.2f}, std {rms:3.2f}"
        plt.hist(n_pe[select], bins=50, label=label)
        plt.legend()
        plt.subplots_adjust(top=0.92)
        if plot_file != "none":
            pp.savefig(plt.gcf())

    if plot_file != "none":
        pp.close()
Esempio n. 33
0
            disp = CameraDisplay(geom, title='CT%d' % args.tel)
            #disp.enable_pixel_picker()
            disp.add_colorbar()
            plt.show(block=False)

        # display the event
        disp.axes.set_title('CT{:03d}, event {:010d}'.format(
            args.tel, event.r0.event_id))
        if args.show_samples:
            # display time-varying event
            data = event.r0.tel[args.tel].adc_samples[args.channel]
            if args.calibrate:
                peds, gains = get_mc_calibration_coeffs(event, args.tel)
                data = apply_mc_calibration(data, peds, gains, args.tel)
            for ii in range(data.shape[1]):
                disp.image = data[:, ii]
                disp.set_limits_percent(70)
                plt.suptitle("Sample {:03d}".format(ii))
                plt.pause(0.01)
                if args.write:
                    plt.savefig('CT{:03d}_EV{:010d}_S{:02d}.png'.format(
                        args.tel, event.r0.event_id, ii))
        else:
            # display integrated event:
            im = event.r0.tel[args.tel].adc_sums[args.channel]
            peds, gains = get_mc_calibration_coeffs(event, args.tel)
            im = apply_mc_calibration(im, peds, gains, args.tel)
            disp.image = im

            plt.pause(1.0)
            if args.write:
    def start(self):

        disp = None

        for event in tqdm(self.source,
                          desc='Tel{}'.format(self.tel),
                          total=self.reader.max_events,
                          disable=~self.progress):

            self.log.debug(event.trig)
            self.log.debug("Energy: {}".format(event.mc.energy))

            self.calibrator.calibrate(event)

            if disp is None:
                x, y = event.inst.pixel_pos[self.tel]
                focal_len = event.inst.optical_foclen[self.tel]
                geom = CameraGeometry.guess(x, y, focal_len)
                self.log.info(geom)
                disp = CameraDisplay(geom)
                # disp.enable_pixel_picker()
                disp.add_colorbar()
                if self.display:
                    plt.show(block=False)

            # display the event
            disp.axes.set_title('CT{:03d} ({}), event {:06d}'.format(
                self.tel, geom.cam_id, event.r0.event_id)
            )

            if self.samples:
                # display time-varying event
                data = event.dl0.tel[self.tel].pe_samples[self.channel]
                for ii in range(data.shape[1]):
                    disp.image = data[:, ii]
                    disp.set_limits_percent(70)
                    plt.suptitle("Sample {:03d}".format(ii))
                    if self.display:
                        plt.pause(self.delay)
                    if self.write:
                        plt.savefig('CT{:03d}_EV{:10d}_S{:02d}.png'
                                    .format(self.tel, event.r0.event_id, ii))
            else:
                # display integrated event:
                im = event.dl1.tel[self.tel].image[self.channel]

                if self.clean:
                    mask = tailcuts_clean(geom, im, picture_thresh=10,
                                          boundary_thresh=7)
                    im[~mask] = 0.0

                disp.image = im

                if self.hillas:
                    try:
                        ellipses = disp.axes.findobj(Ellipse)
                        if len(ellipses) > 0:
                            ellipses[0].remove()

                        params = hillas_parameters(pix_x=geom.pix_x,
                                                   pix_y=geom.pix_y, image=im)
                        disp.overlay_moments(params, color='pink', lw=3,
                                             with_label=False)
                    except HillasParameterizationError:
                        pass

                if self.display:
                    plt.pause(self.delay)
                if self.write:
                    plt.savefig('CT{:03d}_EV{:010d}.png'
                                .format(self.tel, event.r0.event_id))

        self.log.info("FINISHED READING DATA FILE")

        if disp is None:
            self.log.warning('No events for tel {} were found in {}. Try a '
                             'different EventIO file or another telescope'
                             .format(self.tel, self.infile),
                             )

        pass
Esempio n. 35
0
    #Calculate source position
    mcAlt = hdu_list[1].data.field(4)[i]
    mcAz = hdu_list[1].data.field(5)[i]
    mcAlttel = hdu_list[1].data.field(19)[i]
    mcAztel = hdu_list[1].data.field(20)[i]

    srcpos = Disp.calc_CamSourcePos([mcAlt], [mcAz], [mcAlttel], [mcAztel],
                                    focal_length)

    Source_X = srcpos[0]
    Source_Y = srcpos[1]

    cen_x = hdu_list[1].data.field(16)[i]
    cen_y = hdu_list[1].data.field(17)[i]

    disp = Disp.calc_DISP(Source_X, Source_Y, cen_x, cen_y)

    display = CameraDisplay(geom)
    display.add_colorbar()

    image = hdu_list[2].data[i]

    display.image = image
    display.cmap = 'CMRmap'

    plt.plot([Source_X], [Source_Y], marker='o', markersize=10, color="green")
    plt.plot([cen_x], [cen_y], marker='x', markersize=10, color="blue")
    plt.plot([Source_X, cen_x], [Source_Y, cen_y], '-', color="red")
    plt.show()
Esempio n. 36
0
def nsb_rate(
        baseline_histo_file, dark_histo_file, param_file, template_filename,
        plot="show", plot_nsb_range=None, norm="log",
        bias_resistance=1e4 * u.Ohm, cell_capacitance=5e-14 * u.Farad
):
    baseline_histo = Histogram1D.load(baseline_histo_file)
    dark_histo = Histogram1D.load(dark_histo_file)
    baseline_shift = baseline_histo.mean()-dark_histo.mean()
    n_pixel = len(DigiCam.geometry.neighbors)
    pixels = np.arange(n_pixel, dtype=int)
    with open(param_file) as file:
        pulse_template = NormalizedPulseTemplate.load(template_filename)
        pulse_area = pulse_template.integral() * u.ns
        charge_to_amplitude = pulse_template.compute_charge_amplitude_ratio(7, 4)
        calibration_parameters = yaml.load(file)
        gain_integral = np.array(calibration_parameters['gain'])
        gain_amplitude = gain_integral * charge_to_amplitude
        crosstalk = np.array(calibration_parameters['mu_xt'])
    rate = _compute_nsb_rate(
        baseline_shift=baseline_shift, gain=gain_amplitude,
        pulse_area=pulse_area, crosstalk=crosstalk,
        bias_resistance=bias_resistance, cell_capacitance=cell_capacitance
    )
    bad_pixels = get_bad_pixels(
        calib_file=param_file, nsigma_gain=5, nsigma_elecnoise=5,
        dark_histo=dark_histo_file, nsigma_dark=8, plot=None, output=None
    )
    bad_pixels = np.unique(np.hstack(
        (
            bad_pixels,
            pixels[rate < 0],
            pixels[rate > 5 * u.GHz]
        )
    ))
    avg_matrix = _get_average_matrix_bad_pixels(DigiCam.geometry, bad_pixels)
    good_pixels_mask = np.ones(n_pixel, dtype=bool)
    good_pixels_mask[bad_pixels] = False
    good_pixels = pixels[good_pixels_mask]

    rate[bad_pixels] = avg_matrix[bad_pixels, :].dot(rate[good_pixels])
    if plot is None:
        return rate
    fig1, ax = plt.subplots(1, 1)
    display = CameraDisplay(DigiCam.geometry, ax=ax, norm=norm,
                            title='NSB rate [GHz]')
    rate_ghz = rate.to(u.GHz).value
    display.image = rate_ghz
    if plot_nsb_range is None:
        plot_nsb_range = (np.min(rate_ghz), np.max(rate_ghz))
    display.set_limits_minmax(*plot_nsb_range)
    display.add_colorbar(ax=ax)
    display.highlight_pixels(bad_pixels, color='r', linewidth=2)
    plt.tight_layout()
    output_path = os.path.dirname(plot)
    if plot == "show" or \
            (output_path != "" and not os.path.isdir(output_path)):
        if not plot == "show":
            print('WARNING: Path ' + output_path + ' for output trigger ' +
                  'uniformity does not exist, displaying the plot instead.\n')
        plt.show()
    else:
        plt.savefig(plot)
        print(plot, 'created')
    plt.close(fig1)
    return rate
Esempio n. 37
0
    def start(self):
        run_list = np.loadtxt('%s/runlist.txt' % self.input_path, unpack=True)
        plot_cam = False
        plot_delay = 0.5
        disp = None

        if debug:
            fig=plt.figure(1)
            ax=fig.add_subplot(111)
        for n, run in enumerate(run_list[0]):
            # TODO remove need for hardcoded file name
            if self.calibrator == "TargetIOR1Calibrator":
                file_name = "%s/Run%s_r1.tio" % (self.input_path, int(run))
                print(file_name)
            elif self.calibrator == "HESSIOR1Calibrator":
                file_name = "%s/sim_tel/run%s.simtel.gz" % (self.input_path, int(run))
                print(file_name)

            try:
                source = EventSourceFactory.produce(input_url =file_name, max_events=self.max_events)
                true_pe = []
                # lab_pe = []
                for event in tqdm(source):
                    self.cal.calibrate(event)
                    self.dl0.reduce(event)
                    self.dl1.calibrate(event)
                    input_pe = run_list[3][n]

                    if self.plot_cam == True:
                        if disp is None:
                            geom = event.inst.subarray.tel[self.telescopes].camera
                            disp = CameraDisplay(geom)
                            disp.add_colorbar()
                            plt.show(block=False)
                        im = event.dl1.tel[self.telescopes].image[0]
                        disp.image = im
                        plt.pause(plot_delay)

                    true_charge_mc = event.mc.tel[self.telescopes].photo_electron_image
                    measured_charge = event.dl1.tel[self.telescopes].image[0]
                    true_charge_lab = np.asarray([input_pe]*len(measured_charge))
                    true_pe.append(true_charge_mc)
                    if self.use_true_pe:
                        true_charge=true_charge_mc
                    else:
                        true_charge=true_charge_lab.astype(int)

                    self.calculator.add_charges(true_charge, measured_charge)

                    if debug:
                        plt.errorbar(input_pe, np.mean(true_pe), np.std(true_pe),color='k')
            except FileNotFoundError:
                stop=0
                print('file_not_found')
        if debug:
            plt.xscale('log')
            plt.yscale('log')
            plt.plot([0,1000],[0,1000], 'k:')
            plt.xlabel('Input p.e.')
            plt.ylabel('True mc p.e.')
            plt.show()
Esempio n. 38
0
for event in event_source:
    calibrator(event)

    for telescope_id, dl1 in event.dl1.tel.items():

        image = dl1.image
        peakpos = dl1.pulse_time
        camera = event.inst.subarray.tels[telescope_id].camera

        # display dl1 images
        fig, axs = plt.subplots(1, 1, figsize=(6, 3))
        d1 = CameraDisplay(camera, ax=axs)

        axs.set_title('Image ' + camera.cam_id)
        d1.image = dl1.image
        plt.show()
        plt.close(fig)

        # cleaning

        boundary, picture, min_neighbors = cleaning_level[camera.cam_id]

        start = datetime.datetime.now()

        clean1 = fact_image_cleaning(camera,
                                     image,
                                     peakpos,
                                     boundary_threshold=boundary,
                                     picture_threshold=picture,
                                     min_number_neighbors=min_neighbors)
Esempio n. 39
0
def plot(event, telid, chan, extractor_name):
    # Extract required images
    dl0 = event.dl0.tel[telid].waveform

    t_pe = event.mc.tel[telid].photo_electron_image
    dl1 = event.dl1.tel[telid].image
    max_time = np.unravel_index(np.argmax(dl0), dl0.shape)[1]
    max_charges = np.max(dl0, axis=1)
    max_pix = int(np.argmax(max_charges))
    min_pix = int(np.argmin(max_charges))

    geom = event.inst.subarray.tel[telid].camera
    nei = geom.neighbors

    # Get Neighbours
    max_pixel_nei = nei[max_pix]
    min_pixel_nei = nei[min_pix]

    # Draw figures
    ax_max_nei = {}
    ax_min_nei = {}
    fig_waveforms = plt.figure(figsize=(18, 9))
    fig_waveforms.subplots_adjust(hspace=0.5)
    fig_camera = plt.figure(figsize=(15, 12))

    ax_max_pix = fig_waveforms.add_subplot(4, 2, 1)
    ax_min_pix = fig_waveforms.add_subplot(4, 2, 2)
    ax_max_nei[0] = fig_waveforms.add_subplot(4, 2, 3)
    ax_min_nei[0] = fig_waveforms.add_subplot(4, 2, 4)
    ax_max_nei[1] = fig_waveforms.add_subplot(4, 2, 5)
    ax_min_nei[1] = fig_waveforms.add_subplot(4, 2, 6)
    ax_max_nei[2] = fig_waveforms.add_subplot(4, 2, 7)
    ax_min_nei[2] = fig_waveforms.add_subplot(4, 2, 8)

    ax_img_nei = fig_camera.add_subplot(2, 2, 1)
    ax_img_max = fig_camera.add_subplot(2, 2, 2)
    ax_img_true = fig_camera.add_subplot(2, 2, 3)
    ax_img_cal = fig_camera.add_subplot(2, 2, 4)

    # Draw max pixel traces
    ax_max_pix.plot(dl0[max_pix])
    ax_max_pix.set_xlabel("Time (ns)")
    ax_max_pix.set_ylabel("DL0 Samples (ADC)")
    ax_max_pix.set_title(f"(Max) Pixel: {max_pix}, True: {t_pe[max_pix]}, "
                         f"Measured = {dl1[max_pix]:.3f}")
    max_ylim = ax_max_pix.get_ylim()
    for i, ax in ax_max_nei.items():
        if len(max_pixel_nei) > i:
            pix = max_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title(
                "(Max Nei) Pixel: {}, True: {}, Measured = {:.3f}".format(
                    pix, t_pe[pix], dl1[pix]))
            ax.set_ylim(max_ylim)

    # Draw min pixel traces
    ax_min_pix.plot(dl0[min_pix])
    ax_min_pix.set_xlabel("Time (ns)")
    ax_min_pix.set_ylabel("DL0 Samples (ADC)")
    ax_min_pix.set_title(f"(Min) Pixel: {min_pix}, True: {t_pe[min_pix]}, "
                         f"Measured = {dl1[min_pix]:.3f}")
    ax_min_pix.set_ylim(max_ylim)
    for i, ax in ax_min_nei.items():
        if len(min_pixel_nei) > i:
            pix = min_pixel_nei[i]
            ax.plot(dl0[pix])
            ax.set_xlabel("Time (ns)")
            ax.set_ylabel("DL0 Samples (ADC)")
            ax.set_title(f"(Min Nei) Pixel: {pix}, True: {t_pe[pix]}, "
                         f"Measured = {dl1[pix]:.3f}")
            ax.set_ylim(max_ylim)

    # Draw cameras
    nei_camera = np.zeros_like(max_charges, dtype=np.int)
    nei_camera[min_pixel_nei] = 2
    nei_camera[min_pix] = 1
    nei_camera[max_pixel_nei] = 3
    nei_camera[max_pix] = 4
    camera = CameraDisplay(geom, ax=ax_img_nei)
    camera.image = nei_camera
    ax_img_nei.set_title("Neighbour Map")
    ax_img_nei.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords="data",
        xytext=(0.05, 0.98),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="red", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )
    ax_img_nei.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords="data",
        xytext=(0.05, 0.94),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="orange", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )
    camera = CameraDisplay(geom, ax=ax_img_max)
    camera.image = dl0[:, max_time]
    camera.add_colorbar(ax=ax_img_max, label="DL0 Samples (ADC)")
    ax_img_max.set_title(f"Max Timeslice (T = {max_time})")
    ax_img_max.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords="data",
        xytext=(0.05, 0.98),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="red", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )
    ax_img_max.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords="data",
        xytext=(0.05, 0.94),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="orange", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )

    camera = CameraDisplay(geom, ax=ax_img_true)
    camera.image = t_pe
    camera.add_colorbar(ax=ax_img_true, label="True Charge (p.e.)")
    ax_img_true.set_title("True Charge")
    ax_img_true.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords="data",
        xytext=(0.05, 0.98),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="red", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )
    ax_img_true.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords="data",
        xytext=(0.05, 0.94),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="orange", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )

    camera = CameraDisplay(geom, ax=ax_img_cal)
    camera.image = dl1
    camera.add_colorbar(ax=ax_img_cal, label="Calib Charge (Photo-electrons)")
    ax_img_cal.set_title(f"Charge (integrator={extractor_name})")
    ax_img_cal.annotate(
        f"Pixel: {max_pix}",
        xy=(geom.pix_x.value[max_pix], geom.pix_y.value[max_pix]),
        xycoords="data",
        xytext=(0.05, 0.98),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="red", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )
    ax_img_cal.annotate(
        f"Pixel: {min_pix}",
        xy=(geom.pix_x.value[min_pix], geom.pix_y.value[min_pix]),
        xycoords="data",
        xytext=(0.05, 0.94),
        textcoords="axes fraction",
        arrowprops=dict(facecolor="orange", width=2, alpha=0.4),
        horizontalalignment="left",
        verticalalignment="top",
    )

    fig_waveforms.suptitle(f"Integrator = {extractor_name}")
    fig_camera.suptitle(f"Camera = {geom.cam_id}")

    plt.show()