def test_ctc_add_blanks():
    BATCHES = 3
    N_LABELS = 3
    y = T.lmatrix('phonemes')
    y_mask = T.matrix('phonemes_mask')
    blanked_y, blanked_y_mask = ctc_cost._add_blanks(
        y=y,
        blank_symbol=1,
        y_mask=y_mask)
    Y = np.zeros((N_LABELS, BATCHES), dtype='int64')
    Y_mask = np.asarray(np.ones_like(Y), dtype=floatX)
    Y_mask[-1, 0] = 0
    Blanked_y_mask = blanked_y_mask.eval({y_mask: Y_mask})
    Blanked_y = blanked_y.eval({y: Y})
    assert (Blanked_y == np.array([[1, 1, 1],
                                   [0, 0, 0],
                                   [1, 1, 1],
                                   [0, 0, 0],
                                   [1, 1, 1],
                                   [0, 0, 0],
                                   [1, 1, 1]], dtype='int32')).all()
    assert (Blanked_y_mask == np.array([[1., 1., 1.],
                                        [1., 1., 1.],
                                        [1., 1., 1.],
                                        [1., 1., 1.],
                                        [1., 1., 1.],
                                        [0., 1., 1.],
                                        [0., 1., 1.]], dtype=floatX)).all()
def test_ctc_log_path_probabs():
    LENGTH = 10
    BATCHES = 3
    CLASSES = 2
    N_LABELS = 3
    y_hat = T.tensor3('features')
    input_mask = T.matrix('features_mask')
    y_hat_mask = input_mask
    y = T.lmatrix('phonemes')
    y_mask = T.matrix('phonemes_mask')
    blanked_y, blanked_y_mask = ctc_cost._add_blanks(
        y=y,
        blank_symbol=1,
        y_mask=y_mask)
    p = ctc_cost._log_path_probabs(blanked_y, y_hat, blanked_y_mask, y_hat_mask, 1)
    Y_hat = np.zeros((LENGTH, BATCHES, CLASSES + 1), dtype=floatX)
    Y_hat[:, :, 0] = .7
    Y_hat[:, :, 1] = .2
    Y_hat[:, :, 2] = .1
    Y = np.zeros((N_LABELS, BATCHES), dtype='int64')
    Y_hat_mask = np.ones((LENGTH, BATCHES), dtype=floatX)
    Y_hat_mask[-2:, 0] = 0
    Y_mask = np.asarray(np.ones_like(Y), dtype=floatX)
    forward_probs = p.eval({y_hat: Y_hat, y: Y,
                            y_hat_mask: Y_hat_mask, y_mask: Y_mask})
    assert forward_probs[-2, 0, 0] == -np.inf
    Y_mask[-1] = 0
    forward_probs_y_mask = p.eval({y_hat: Y_hat, y: Y,
                                   y_hat_mask: Y_hat_mask, y_mask: Y_mask})
    assert forward_probs_y_mask[-1, 1, -2] == -np.inf
    assert not np.isnan(forward_probs).any()
Esempio n. 3
0
def test_ctc_log_forward_backward():
    LENGTH = 8
    BATCHES = 4
    CLASSES = 2
    N_LABELS = 3
    y_hat = T.tensor3('features')
    input_mask = T.matrix('features_mask')
    y_hat_mask = input_mask
    y = T.lmatrix('phonemes')
    y_mask = T.matrix('phonemes_mask')
    blanked_y, blanked_y_mask = ctc_cost._add_blanks(y=y,
                                                     blank_symbol=1,
                                                     y_mask=y_mask)
    f, b = ctc_cost._log_forward_backward(blanked_y, y_hat, blanked_y_mask,
                                          y_hat_mask, CLASSES)
    Y_hat = np.zeros((LENGTH, BATCHES, CLASSES + 1), dtype=floatX)
    Y_hat[:, :, 0] = .7
    Y_hat[:, :, 1] = .2
    Y_hat[:, :, 2] = .1
    Y_hat[3, :, 0] = .3
    Y_hat[3, :, 1] = .4
    Y_hat[3, :, 2] = .3
    Y = np.zeros((N_LABELS, BATCHES), dtype='int64')
    Y_hat_mask = np.ones((LENGTH, BATCHES), dtype=floatX)
    Y_hat_mask[-2:] = 0
    Y_mask = np.asarray(np.ones_like(Y), dtype=floatX)
    Y_mask[-2:, 0] = 0
    y_prob = ctc_cost._class_batch_to_labeling_batch(blanked_y, y_hat,
                                                     y_hat_mask)
    forward_probs = f.eval({
        y_hat: Y_hat,
        y: Y,
        y_hat_mask: Y_hat_mask,
        y_mask: Y_mask
    })
    backward_probs = b.eval({
        y_hat: Y_hat,
        y: Y,
        y_hat_mask: Y_hat_mask,
        y_mask: Y_mask
    })
    y_probs = y_prob.eval({y_hat: Y_hat, y: Y, y_hat_mask: Y_hat_mask})
    assert not ((forward_probs + backward_probs)[:, 0, :] == -np.inf).all()
    marg = forward_probs + backward_probs - np.log(y_probs)
    forward_probs = np.exp(forward_probs)
    backward_probs = np.exp(backward_probs)
    L = (forward_probs * backward_probs[::-1][:, :, ::-1] / y_probs).sum(2)
    assert not np.isnan(forward_probs).any()
def test_ctc_log_forward_backward():
    LENGTH = 8
    BATCHES = 4
    CLASSES = 2
    N_LABELS = 3
    y_hat = T.tensor3('features')
    input_mask = T.matrix('features_mask')
    y_hat_mask = input_mask
    y = T.lmatrix('phonemes')
    y_mask = T.matrix('phonemes_mask')
    blanked_y, blanked_y_mask = ctc_cost._add_blanks(
        y=y,
        blank_symbol=1,
        y_mask=y_mask)
    f, b = ctc_cost._log_forward_backward(blanked_y, y_hat,
                                          blanked_y_mask, y_hat_mask, CLASSES)
    Y_hat = np.zeros((LENGTH, BATCHES, CLASSES + 1), dtype=floatX)
    Y_hat[:, :, 0] = .7
    Y_hat[:, :, 1] = .2
    Y_hat[:, :, 2] = .1
    Y_hat[3, :, 0] = .3
    Y_hat[3, :, 1] = .4
    Y_hat[3, :, 2] = .3
    Y = np.zeros((N_LABELS, BATCHES), dtype='int64')
    Y_hat_mask = np.ones((LENGTH, BATCHES), dtype=floatX)
    Y_hat_mask[-2:] = 0
    Y_mask = np.asarray(np.ones_like(Y), dtype=floatX)
    Y_mask[-2:, 0] = 0
    y_prob = ctc_cost._class_batch_to_labeling_batch(blanked_y,
                                                    y_hat,
                                                    y_hat_mask)
    forward_probs = f.eval({y_hat: Y_hat, y: Y,
                            y_hat_mask: Y_hat_mask, y_mask: Y_mask})
    backward_probs = b.eval({y_hat: Y_hat, y: Y,
                            y_hat_mask: Y_hat_mask, y_mask: Y_mask})
    y_probs = y_prob.eval({y_hat: Y_hat, y: Y, y_hat_mask: Y_hat_mask})
    assert not ((forward_probs + backward_probs)[:, 0, :] == -np.inf).all()
    marg = forward_probs + backward_probs - np.log(y_probs)
    forward_probs = np.exp(forward_probs)
    backward_probs = np.exp(backward_probs)
    L = (forward_probs * backward_probs[::-1][:, :, ::-1] / y_probs).sum(2)
    assert not np.isnan(forward_probs).any()
Esempio n. 5
0
def test_ctc_add_blanks():
    BATCHES = 3
    N_LABELS = 3
    y = T.lmatrix('phonemes')
    y_mask = T.matrix('phonemes_mask')
    blanked_y, blanked_y_mask = ctc_cost._add_blanks(y=y,
                                                     blank_symbol=1,
                                                     y_mask=y_mask)
    Y = np.zeros((N_LABELS, BATCHES), dtype='int64')
    Y_mask = np.asarray(np.ones_like(Y), dtype=floatX)
    Y_mask[-1, 0] = 0
    Blanked_y_mask = blanked_y_mask.eval({y_mask: Y_mask})
    Blanked_y = blanked_y.eval({y: Y})
    assert (Blanked_y == np.array([[1, 1, 1], [0, 0, 0], [1, 1, 1], [0, 0, 0],
                                   [1, 1, 1], [0, 0, 0], [1, 1, 1]],
                                  dtype='int32')).all()
    assert (Blanked_y_mask == np.array(
        [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.],
         [0., 1., 1.], [0., 1., 1.]],
        dtype=floatX)).all()
Esempio n. 6
0
def test_ctc_log_path_probabs():
    LENGTH = 10
    BATCHES = 3
    CLASSES = 2
    N_LABELS = 3
    y_hat = T.tensor3('features')
    input_mask = T.matrix('features_mask')
    y_hat_mask = input_mask
    y = T.lmatrix('phonemes')
    y_mask = T.matrix('phonemes_mask')
    blanked_y, blanked_y_mask = ctc_cost._add_blanks(y=y,
                                                     blank_symbol=1,
                                                     y_mask=y_mask)
    p = ctc_cost._log_path_probabs(blanked_y, y_hat, blanked_y_mask,
                                   y_hat_mask, 1)
    Y_hat = np.zeros((LENGTH, BATCHES, CLASSES + 1), dtype=floatX)
    Y_hat[:, :, 0] = .7
    Y_hat[:, :, 1] = .2
    Y_hat[:, :, 2] = .1
    Y = np.zeros((N_LABELS, BATCHES), dtype='int64')
    Y_hat_mask = np.ones((LENGTH, BATCHES), dtype=floatX)
    Y_hat_mask[-2:, 0] = 0
    Y_mask = np.asarray(np.ones_like(Y), dtype=floatX)
    forward_probs = p.eval({
        y_hat: Y_hat,
        y: Y,
        y_hat_mask: Y_hat_mask,
        y_mask: Y_mask
    })
    assert forward_probs[-2, 0, 0] == -np.inf
    Y_mask[-1] = 0
    forward_probs_y_mask = p.eval({
        y_hat: Y_hat,
        y: Y,
        y_hat_mask: Y_hat_mask,
        y_mask: Y_mask
    })
    assert forward_probs_y_mask[-1, 1, -2] == -np.inf
    assert not np.isnan(forward_probs).any()