def map_fn(self, splited_logits): _d = [] for value in splited_logits: _d.append( ctc_greedy_decoder(probs_seq=value, vocabulary=self.vocab_array)) return _d
def _perform_greedy( self, probs: np.ndarray, ): from ctc_decoders import ctc_greedy_decoder decoded = ctc_greedy_decoder( probs, vocabulary=self.text_featurizer.non_blank_tokens) return tf.convert_to_tensor(decoded, dtype=tf.string)
def perform_greedy(self, probs: np.ndarray): decoded = ctc_greedy_decoder( probs, vocabulary=self.text_featurizer.vocab_array) return tf.convert_to_tensor(decoded, dtype=tf.string)
0.04139363, ], [ 0.15882358, 0.1235788, 0.23376776, 0.20510435, 0.00279306, 0.05294827, 0.22298418, ], ] greedy_result = ["ac'bdc", "b'da"] beam_search_result = ['acdc', "b'a"] ctc_greedy_decoder(np.array(probs_seq1), vocab_list) == greedy_result[0] ctc_greedy_decoder(np.array(probs_seq2), vocab_list) == greedy_result[1] ctc_beam_search_decoder( probs_seq=np.array(probs_seq1), beam_size=beam_size, vocabulary=vocab_list, ) ctc_beam_search_decoder( probs_seq=np.array(probs_seq2), beam_size=beam_size, vocabulary=vocab_list, )