Esempio n. 1
0
    def test_qr(self):
        m = 8
        n = 4
        for dt in [numpy.float32, numpy.float64, numpy.complex64, numpy.complex128]:
            A = ctf.random.random((m,n))
            A = ctf.astensor(A,dtype=dt)
            [Q,R]=ctf.qr(A)
            self.assertTrue(allclose(A, ctf.dot(Q,R)))
            self.assertTrue(allclose(ctf.eye(n), ctf.dot(Q.T(), Q)))

        A = ctf.tensor((m,n),dtype=numpy.complex64)
        rA = ctf.tensor((m,n),dtype=numpy.float32)
        rA.fill_random()
        A.real(rA)
        iA = ctf.tensor((m,n),dtype=numpy.float32)
        iA.fill_random()
        A.imag(iA)

        [Q,R]=ctf.qr(A)

        self.assertTrue(allclose(A, ctf.dot(Q,R)))
        self.assertTrue(allclose(ctf.eye(n,dtype=numpy.complex64), ctf.dot(ctf.conj(Q.T()), Q)))

        A = ctf.tensor((m,n),dtype=numpy.complex128)
        rA = ctf.tensor((m,n),dtype=numpy.float64)
        rA.fill_random()
        A.real(rA)
        iA = ctf.tensor((m,n),dtype=numpy.float64)
        iA.fill_random()
        A.imag(iA)

        [Q,R]=ctf.qr(A)

        self.assertTrue(allclose(A, ctf.dot(Q,R)))
        self.assertTrue(allclose(ctf.eye(n,dtype=numpy.complex128), ctf.dot(ctf.conj(Q.T()), Q)))
Esempio n. 2
0
    def test_qr(self):
        m = 8
        n = 4
        for dt in [numpy.float32, numpy.float64]:
            A = ctf.random.random((m,n))
            A = ctf.astensor(A,dtype=dt)
            [Q,R]=ctf.qr(A)
            self.assertTrue(allclose(A, ctf.dot(Q,R)))
            self.assertTrue(allclose(ctf.eye(n), ctf.dot(Q.T(), Q)))

        A = ctf.tensor((m,n),dtype=numpy.complex64)
        rA = ctf.tensor((m,n),dtype=numpy.float32)
        rA.fill_random()
        A.real(rA)
        iA = ctf.tensor((m,n),dtype=numpy.float32)
        iA.fill_random()
        A.imag(iA)

        [Q,R]=ctf.qr(A)

        self.assertTrue(allclose(A, ctf.dot(Q,R)))
        self.assertTrue(allclose(ctf.eye(n,dtype=numpy.complex64), ctf.dot(ctf.conj(Q.T()), Q)))

        A = ctf.tensor((m,n),dtype=numpy.complex128)
        rA = ctf.tensor((m,n),dtype=numpy.float64)
        rA.fill_random()
        A.real(rA)
        iA = ctf.tensor((m,n),dtype=numpy.float64)
        iA.fill_random()
        A.imag(iA)

        [Q,R]=ctf.qr(A)

        self.assertTrue(allclose(A, ctf.dot(Q,R)))
        self.assertTrue(allclose(ctf.eye(n,dtype=numpy.complex128), ctf.dot(ctf.conj(Q.T()), Q)))
Esempio n. 3
0
    def test_qr(self):
        for (m, n) in [(8, 4), (4, 7), (3, 3)]:
            for dt in [np.float32, np.float64, np.complex64, np.complex128]:
                A = ctf.random.random((m, n))
                A = ctf.astensor(A, dtype=dt)
                [Q, R] = ctf.qr(A)
                self.assertTrue(allclose(A, ctf.dot(Q, R)))
                if (m >= n):
                    self.assertTrue(allclose(ctf.eye(n), ctf.dot(Q.T(), Q)))
                else:
                    self.assertTrue(allclose(ctf.eye(m), ctf.dot(Q, Q.T())))

            A = ctf.tensor((m, n), dtype=np.complex64)
            rA = ctf.tensor((m, n), dtype=np.float32)
            rA.fill_random()
            A.real(rA)
            iA = ctf.tensor((m, n), dtype=np.float32)
            iA.fill_random()
            A.imag(iA)

            [Q, R] = ctf.qr(A)

            self.assertTrue(allclose(A, ctf.dot(Q, R)))
            if (m >= n):
                self.assertTrue(
                    allclose(ctf.eye(n, dtype=np.complex64),
                             ctf.dot(ctf.conj(Q.T()), Q)))
            else:
                self.assertTrue(
                    allclose(ctf.eye(m, dtype=np.complex64),
                             ctf.dot(Q, ctf.conj(Q.T()))))

            A = ctf.tensor((m, n), dtype=np.complex128)
            rA = ctf.tensor((m, n), dtype=np.float64)
            rA.fill_random()
            A.real(rA)
            iA = ctf.tensor((m, n), dtype=np.float64)
            iA.fill_random()
            A.imag(iA)

            [Q, R] = ctf.qr(A)

            self.assertTrue(allclose(A, ctf.dot(Q, R)))
            if (m >= n):
                self.assertTrue(
                    allclose(ctf.eye(n, dtype=np.complex128),
                             ctf.dot(ctf.conj(Q.T()), Q)))
            else:
                self.assertTrue(
                    allclose(ctf.eye(m, dtype=np.complex128),
                             ctf.dot(Q, ctf.conj(Q.T()))))
Esempio n. 4
0
def rsvd(a, rank, niter=2, oversamp=5):
    m, n = a.shape
    r = min(rank + oversamp, m, n)
    # find subspace
    q = ctf.random.random((n, r)) * 2 - 1.
    for i in range(niter):
        q = a.transpose() @ (a @ q)
        q, _ = ctf.qr(q)
    q = a @ q
    q, _ = ctf.qr(q)
    # svd
    a_sub = q.transpose() @ a
    u_sub, s, vh = ctf.svd(a_sub)
    u = q @ u_sub
    if rank < r:
        u, s, vh = u[:, :rank], s[:rank], vh[:rank, :]
    return u, s, vh
Esempio n. 5
0
def davidson(mult_by_A, N, neig, x0=None, Adiag=None, verbose=4):
    """Diagonalize a matrix via non-symmetric Davidson algorithm.

    mult_by_A() is a function which takes a vector of length N
        and returns a vector of length N.
    neig is the number of eigenvalues requested
    """

    if rank == 0:
        log = lib.logger.Logger(sys.stdout, verbose)
    else:
        log = lib.logger.Logger(sys.stdout, 0)

    cput1 = (time.clock(), time.time())

    Mmin = min(neig, N)
    Mmax = min(N, 2000)
    tol = 1e-6

    def mult(arg):
        return mult_by_A(arg)

    if Adiag is None:
        Adiag = np.zeros(N, np.complex)
        for i in range(N):
            test = np.zeros(N, np.complex)
            test[i] = 1.0
            Adiag[i] = mult(test)[i]
    else:
        Adiag = Adiag.to_nparray()

    idx = Adiag.argsort()
    lamda_k_old = 0
    lamda_k = 0
    target = 0
    conv = False
    if x0 is not None:
        assert x0.shape == (Mmin, N)
        b = x0.copy()
        Ab = tuple([mult(b[m, :]) for m in range(Mmin)])
        Ab = ctf.vstack(Ab).transpose()

    evals = np.zeros(neig, dtype=np.complex)
    evecs = []
    for istep, M in enumerate(range(Mmin, Mmax + 1)):
        if M == Mmin:
            b = ctf.zeros((N, M))
            if rank == 0:
                ind = [i * M + m for m, i in zip(range(M), idx)]
                fill = np.ones(len(ind))
                b.write(ind, fill)
            else:
                b.write([], [])
            Ab = tuple([mult(b[:, m]) for m in range(M)])
            Ab = ctf.vstack(Ab).transpose()

        else:

            Ab = ctf.hstack((Ab, mult(b[:, M - 1]).reshape(N, -1)))

        Atilde = ctf.dot(b.conj().transpose(), Ab)
        Atilde = Atilde.to_nparray()

        lamda, alpha = diagonalize_asymm(Atilde)
        lamda_k_old, lamda_k = lamda_k, lamda[target]
        alpha_k = ctf.astensor(alpha[:, target])
        if M == Mmax:
            break

        q = ctf.dot(Ab - lamda_k * b, alpha_k)
        qnorm = ctf.norm(q)
        log.info(
            'davidson istep = %d  root = %d  E = %.15g  dE = %.9g  residual = %.6g',
            istep, target, lamda_k.real, (lamda_k - lamda_k_old).real, qnorm)
        cput1 = log.timer('davidson iter', *cput1)

        if ctf.norm(q) < tol:
            evecs.append(ctf.dot(b, alpha_k))
            evals[target] = lamda_k
            if target == neig - 1:
                conv = True
                break
            else:
                target += 1
        eps = 1e-10
        xi = q / (lamda_k - Adiag + eps)
        bxi, R = ctf.qr(ctf.hstack((b, xi.reshape(N, -1))))
        nlast = bxi.shape[-1] - 1
        b = ctf.hstack(
            (b, bxi[:, nlast].reshape(N, -1))
        )  #can not replace nlast with -1, (inconsistent between numpy and ctf)
    evecs = ctf.vstack(tuple(evecs))

    return conv, evals, evecs
Esempio n. 6
0
def qr(A):
    return ctf.qr(q)