Esempio n. 1
0
def sparse_update(T, factors, Lambda, sizes, rank, stepSize, sample_rate,
                  times):
    starting_time = time.time()
    t_go = ctf.timer("SGD_getOmega")
    t_go.start()
    omega = getOmega(T)
    t_go.stop()
    dimension = len(sizes)
    indexes = INDEX_STRING[:dimension]
    R = ctf.tensor(copy=T)  #ctf.tensor(tuple(sizes), sp = True)
    times[2] += time.time() - starting_time
    for i in range(dimension):
        tup_list = [factors[i].i(indexes[i] + "r") for i in range(dimension)]
        #R.i(indexes) << T.i(indexes) - omega.i(indexes) * reduce(lambda x, y: x * y, tup_list)
        starting_time = time.time()
        R.i(indexes) << -1. * ctf.TTTP(omega, factors).i(indexes)
        times[3] += time.time() - starting_time
        starting_time = time.time()
        #H = ctf.tensor(tuple((sizes[:i] + sizes[i + 1:] + [rank])))
        times[4] += time.time() - starting_time
        starting_time = time.time()
        #H.i(indexes[:i] + indexes[i + 1:] + "r") <<
        Hterm = reduce(lambda x, y: x * y, tup_list[:i] + tup_list[i + 1:])
        times[5] += time.time() - starting_time
        starting_time = time.time()
        t_ctr = ctf.timer("SGD_main_contraction")
        t_ctr.start()
        (1 - stepSize * 2 * Lambda * sample_rate
         ) * factors[i].i(indexes[i] + "r") << stepSize * Hterm * R.i(indexes)
        t_ctr.stop()
        times[6] += time.time() - starting_time
        if i < dimension - 1:
            R = ctf.tensor(copy=T)
Esempio n. 2
0
def sparse_update(T, factors, Lambda, sizes, rank, stepSize, sample_rate, times, use_MTTKRP):
    starting_time = time.time()
    t_go = ctf.timer("SGD_getOmega")
    t_go.start()
    omega = getOmega(T)
    t_go.stop()
    dimension = len(sizes)
    indexes = INDEX_STRING[:dimension]
    R = ctf.tensor(copy=T) #ctf.tensor(tuple(sizes), sp = True)
    times[2] += time.time() - starting_time
    for i in range(dimension):
        starting_time = time.time()
        R.i(indexes) << -1.* ctf.TTTP(omega, factors).i(indexes)
        times[3] += time.time() - starting_time
        starting_time = time.time()
        times[4] += time.time() - starting_time
        starting_time = time.time()
        times[5] += time.time() - starting_time
        starting_time = time.time()
        t_ctr = ctf.timer("SGD_main_contraction")
        t_ctr.start()
        if use_MTTKRP:
            new_fi = (1- stepSize * 2 * Lambda * sample_rate)*factors[i]
            ctf.MTTKRP(R, factors, i)
            stepSize*factors[i].i("ir") << new_fi.i("ir")
        else:
            tup_list = [factors[i].i(indexes[i] + "r") for i in range(dimension)]
            Hterm = reduce(lambda x, y: x * y, tup_list[:i] + tup_list[i + 1:])
            (1- stepSize * 2 * Lambda * sample_rate)*factors[i].i(indexes[i] + "r") << stepSize * Hterm * R.i(indexes)
        t_ctr.stop()
        times[6] += time.time() - starting_time
        if i < dimension - 1:
            R = ctf.tensor(copy=T)
Esempio n. 3
0
def getOmega(T):
    t_om = ctf.timer("ccd_getOmega")
    t_om.start()
    [inds, data] = T.read_local_nnz()
    data[:] = 1.
    Omega = ctf.tensor(T.shape, sp=True)
    Omega.write(inds, data)
    t_om.stop()
    return Omega
Esempio n. 4
0
def get_objective(T,U,V,W,omega,regParam):
    t_obj = ctf.timer("ccd_get_objective")
    t_obj.start()
    L = ctf.tensor(T.shape, sp=T.sp)
    t0 = time.time()
    L.i("ijk") << T.i("ijk") - ctf.TTTP(omega, [U,V,W]).i("ijk")
    t1 = time.time()
    normL = ctf.vecnorm(L)
    if T.sp == True:
        RMSE = normL/(T.nnz_tot**.5)
    else:
        nnz_tot = ctf.sum(omega)
        RMSE = normL/(nnz_tot**.5)
    objective = normL + (ctf.vecnorm(U) + ctf.vecnorm(V) + ctf.vecnorm(W)) * regParam
    t2 = time.time()
    if glob_comm.rank() == 0 and status_prints == True:
        print('generate L takes {}'.format(t1 - t0))
        print('calc objective takes {}'.format(t2 - t1))
    t_obj.stop()
    return [objective, RMSE]
Esempio n. 5
0
def CG(A, b, x0, r, regParam, I, is_implicit=False):

    t_batch_cg = ctf.timer("ALS_exp_cg")
    t_batch_cg.start()

    Ax0 = ctf.tensor((I, r))
    if is_implicit:
        Ax0.i("ir") << A.mul("ir", x0)
    else:
        Ax0.i("ir") << A.i("irl") * x0.i("il")
    Ax0 += regParam * x0
    rk = b - Ax0
    sk = rk
    xk = x0
    for i in range(sk.shape[-1]):  # how many iterations?
        Ask = ctf.tensor((I, r))
        t_cg_bmvec = ctf.timer("ALS_exp_cg_mvec")
        t_cg_bmvec.start()
        t0 = time.time()
        if is_implicit:
            Ask.i("ir") << A.mul("ir", sk)
        else:
            Ask.i("ir") << A.i("irl") * sk.i("il")
        t1 = time.time()
        if ctf.comm().rank == 0 and status_prints == True:
            print('form Ask takes {}'.format(t1 - t0))
        t_cg_bmvec.stop()

        Ask += regParam * sk

        rnorm = ctf.tensor(I)
        rnorm.i("i") << rk.i("ir") * rk.i("ir")

        skAsk = ctf.tensor(I)
        skAsk.i("i") << sk.i("ir") * Ask.i("ir")

        alpha = rnorm / (skAsk + 1.e-30)

        alphask = ctf.tensor((I, r))
        alphask.i("ir") << alpha.i("i") * sk.i("ir")
        xk1 = xk + alphask

        alphaask = ctf.tensor((I, r))
        alphaask.i("ir") << alpha.i("i") * Ask.i("ir")
        rk1 = rk - alphaask

        rk1norm = ctf.tensor(I)
        rk1norm.i("i") << rk1.i("ir") * rk1.i("ir")

        beta = rk1norm / (rnorm + 1.e-30)

        betask = ctf.tensor((I, r))
        betask.i("ir") << beta.i("i") * sk.i("ir")
        sk1 = rk1 + betask
        rk = rk1
        xk = xk1
        sk = sk1
        if ctf.vecnorm(rk) < CG_thresh:
            break

    #print("explicit CG residual after",sk.shape[-1],"iterations is",ctf.vecnorm(rk))

    t_batch_cg.stop()
    return xk
Esempio n. 6
0
def getALS_CG(T,
              U,
              V,
              W,
              regParam,
              omega,
              I,
              J,
              K,
              r,
              block_size,
              num_iter=100,
              err_thresh=.001,
              time_limit=600,
              use_implicit=True):

    if use_implicit == True:
        t_ALS_CG = ctf.timer_epoch("als_CG_implicit")
        if ctf.comm().rank() == 0:
            print(
                "--------------------------------ALS with implicit CG------------------------"
            )
    else:
        t_ALS_CG = ctf.timer_epoch("als_CG_explicit")
        if ctf.comm().rank() == 0:
            print(
                "--------------------------------ALS with explicit CG------------------------"
            )
    if T.sp == True:
        nnz_tot = T.nnz_tot
    else:
        nnz_tot = ctf.sum(omega)
    t_ALS_CG.begin()

    it = 0

    if block_size <= 0:
        block_size = max(I, J, K)

    t_init_error_norm = ctf.timer("ALS_init_error_tensor_norm")
    t_init_error_norm.start()
    t0 = time.time()
    E = ctf.tensor((I, J, K), sp=T.sp)
    #E.i("ijk") << T.i("ijk") - omega.i("ijk")*U.i("iu")*V.i("ju")*W.i("ku")
    E.i("ijk") << T.i("ijk") - ctf.TTTP(omega, [U, V, W]).i("ijk")
    t1 = time.time()
    curr_err_norm = ctf.vecnorm(E) + (ctf.vecnorm(U) + ctf.vecnorm(V) +
                                      ctf.vecnorm(W)) * regParam
    t2 = time.time()

    t_init_error_norm.stop()
    if ctf.comm().rank() == 0 and status_prints == True:
        print('ctf.TTTP() takes {}'.format(t1 - t0))
        print('ctf.vecnorm {}'.format(t2 - t1))

    t_before_loop = time.time()
    t_obj_calc = 0.
    ctf.random.seed(42)
    while True:

        t_upd_cg = ctf.timer("ALS_upd_cg")
        t_upd_cg.start()

        U = updateFactor(T, U, V, W, regParam, omega, I, J, K, r, block_size,
                         "U", use_implicit)
        V = updateFactor(T, U, V, W, regParam, omega, I, J, K, r, block_size,
                         "V", use_implicit)
        W = updateFactor(T, U, V, W, regParam, omega, I, J, K, r, block_size,
                         "W", use_implicit)

        duration = time.time() - t_before_loop - t_obj_calc
        t_b_obj = time.time()
        E.set_zero()
        #E.i("ijk") << T.i("ijk") - omega.i("ijk")*U.i("iu")*V.i("ju")*W.i("ku")
        E.i("ijk") << T.i("ijk") - ctf.TTTP(omega, [U, V, W]).i("ijk")
        diff_norm = ctf.vecnorm(E)
        RMSE = diff_norm / (nnz_tot**.5)
        next_err_norm = diff_norm + (ctf.vecnorm(U) + ctf.vecnorm(V) +
                                     ctf.vecnorm(W)) * regParam
        t_obj_calc += time.time() - t_b_obj

        t_upd_cg.stop()

        it += 1
        if ctf.comm().rank() == 0:
            #print("Last residual:",curr_err_norm,"New residual",next_err_norm)
            print('Objective after', duration, 'seconds (', it,
                  'iterations) is: {}'.format(next_err_norm))
            print('RMSE after', duration, 'seconds (', it,
                  'iterations) is: {}'.format(RMSE))

        if abs(curr_err_norm - next_err_norm
               ) < err_thresh or it >= num_iter or duration > time_limit:
            break

        curr_err_norm = next_err_norm

    t_ALS_CG.end()
    duration = time.time() - t_before_loop - t_obj_calc

    if glob_comm.rank() == 0:
        print('ALS (implicit =', use_implicit,
              ') time per sweep: {}'.format(duration / it))
Esempio n. 7
0
def updateFactor(T, U, V, W, regParam, omega, I, J, K, r, block_size, string,
                 use_implicit):

    t_RHS = ctf.timer("ALS_imp_cg_RHS")
    t_cg_TTTP = ctf.timer("ALS_imp_cg_TTTP")
    t_o_slice = ctf.timer("ALS_imp_omega_slice")
    t_form_EQs = ctf.timer("ALS_exp_form_EQs")
    t_form_RHS = ctf.timer("ALS_exp_form_RHS")
    if (string == "U"):
        num_blocks = int((I + block_size - 1) / block_size)
        for n in range(num_blocks):
            I_start = n * block_size
            I_end = min(I, I_start + block_size)
            bsize = I_end - I_start
            t_o_slice.start()
            nomega = omega[I_start:I_end, :, :]
            t_o_slice.stop()
            x0 = ctf.random.random((bsize, r))
            b = ctf.tensor((bsize, r))
            t_RHS.start()
            b.i("ir") << V.i("Jr") * W.i("Kr") * T[I_start:I_end, :, :].i(
                "iJK")  # RHS; ATb
            t_RHS.stop()

            if use_implicit:
                Ax0 = ctf.tensor((bsize, r))
                t_cg_TTTP.start()
                Ax0.i("ir") << V.i("Jr") * W.i("Kr") * ctf.TTTP(
                    nomega, [x0, V, W]).i("iJK")
                t_cg_TTTP.stop()
                Ax0 += regParam * x0
                U[I_start:I_end, :] = CG(implicit_ATA(V, W, nomega, "U"), b,
                                         x0, r, regParam, bsize, True)
            else:
                A = ctf.tensor((bsize, r, r))
                t_form_EQs.start()
                A.i("iuv") << V.i("Ju") * W.i("Ku") * nomega.i("iJK") * V.i(
                    "Jv") * W.i("Kv")
                t_form_EQs.stop()
                U[I_start:I_end, :] = CG(A, b, x0, r, regParam, bsize)

        return U

    if (string == "V"):
        num_blocks = int((J + block_size - 1) / block_size)
        for n in range(num_blocks):
            J_start = n * block_size
            J_end = min(J, J_start + block_size)
            bsize = J_end - J_start
            t_o_slice.start()
            nomega = omega[:, J_start:J_end, :]
            t_o_slice.stop()
            x0 = ctf.random.random((bsize, r))
            b = ctf.tensor((bsize, r))
            t_RHS.start()
            b.i("jr") << U.i("Ir") * W.i("Kr") * T[:, J_start:J_end, :].i(
                "IjK")  # RHS; ATb
            t_RHS.stop()
            if use_implicit:
                Ax0 = ctf.tensor((bsize, r))
                t_cg_TTTP.start()
                Ax0.i("jr") << U.i("Ir") * W.i("Kr") * ctf.TTTP(
                    nomega, [U, x0, W]).i("IjK")
                t_cg_TTTP.stop()
                Ax0 += regParam * x0
                V[J_start:J_end, :] = CG(implicit_ATA(U, W, nomega, "V"), b,
                                         x0, r, regParam, bsize, True)
            else:
                A = ctf.tensor((bsize, r, r))
                t_form_EQs.start()
                A.i("juv") << U.i("Iu") * W.i("Ku") * nomega.i("IjK") * U.i(
                    "Iv") * W.i("Kv")
                t_form_EQs.stop()
                V[J_start:J_end, :] = CG(A, b, x0, r, regParam, bsize)

        return V

    if (string == "W"):
        num_blocks = int((K + block_size - 1) / block_size)
        for n in range(num_blocks):
            K_start = n * block_size
            K_end = min(K, K_start + block_size)
            bsize = K_end - K_start
            t_o_slice.start()
            nomega = omega[:, :, K_start:K_end]
            t_o_slice.stop()
            x0 = ctf.random.random((bsize, r))
            b = ctf.tensor((bsize, r))
            t_RHS.start()
            b.i("kr") << U.i("Ir") * V.i("Jr") * T[:, :, K_start:K_end].i(
                "IJk")  # RHS; ATb
            t_RHS.stop()
            if use_implicit:
                Ax0 = ctf.tensor((bsize, r))
                t_cg_TTTP.start()
                Ax0.i("kr") << U.i("Ir") * V.i("Jr") * ctf.TTTP(
                    nomega, [U, V, x0]).i("IJk")
                t_cg_TTTP.stop()
                Ax0 += regParam * x0
                W[K_start:K_end, :] = CG(implicit_ATA(U, V, nomega, "W"), b,
                                         x0, r, regParam, bsize, True)
            else:
                A = ctf.tensor((bsize, r, r))
                t_form_EQs.start()
                A.i("kuv") << U.i(
                    "Iu") * V.i("Ju") * nomega.i("IJk") * U.i("Iv") * V.i(
                        "Jv")  # LHS; ATA using matrix-vector multiplication
                t_form_EQs.stop()
                W[K_start:K_end, :] = CG(A, b, x0, r, regParam, bsize)

        return W
Esempio n. 8
0
def run_CCD(T,U,V,W,omega,regParam,num_iter,time_limit,objective_frequency,use_MTTKRP=True):
    U_vec_list = []
    V_vec_list = []
    W_vec_list = []
    r = U.shape[1]
    for f in range(r):
        U_vec_list.append(U[:,f])
        V_vec_list.append(V[:,f])
        W_vec_list.append(W[:,f])


    # print(T)
    # T.write_to_file('tensor_out.txt')
    # assert(T.sp == 1)

    ite = 0
    objectives = []

    t_before_loop = time.time()
    t_obj_calc = 0.

    t_CCD = ctf.timer_epoch("ccd_CCD")
    t_CCD.begin()
    while True:

        t_iR_upd = ctf.timer("ccd_init_R_upd")
        t_iR_upd.start()
        t0 = time.time()
        R = ctf.copy(T)
        t1 = time.time()
        # R -= ctf.einsum('ijk, ir, jr, kr -> ijk', omega, U, V, W)
        R -= ctf.TTTP(omega, [U,V,W])
        t2 = time.time()
        # R += ctf.einsum('ijk, i, j, k -> ijk', omega, U[:,0], V[:,0], W[:,0])
        R += ctf.TTTP(omega, [U[:,0], V[:,0], W[:,0]])
        t3 = time.time()

        t_iR_upd.stop()

        t_b_obj = time.time()
        if ite % objective_frequency == 0:
            duration = time.time() - t_before_loop - t_obj_calc
            [objective, RMSE] = get_objective(T,U,V,W,omega,regParam)
            objectives.append(objective)
            if glob_comm.rank() == 0:
                print('Objective after',duration,'seconds (',ite,'iterations) is: {}'.format(objective))
                print('RMSE after',duration,'seconds (',ite,'iterations) is: {}'.format(RMSE))
        t_obj_calc += time.time() - t_b_obj

        if glob_comm.rank() == 0 and status_prints == True:
            print('ctf.copy() takes {}'.format(t1-t0))
            print('ctf.TTTP() takes {}'.format(t2-t1))
            print('ctf.TTTP() takes {}'.format(t3-t2))


        for f in range(r):

            # update U[:,f]
            if glob_comm.rank() == 0 and status_prints == True:
                print('updating U[:,{}]'.format(f))

            t0 = time.time()
            if use_MTTKRP:
                alphas = ctf.tensor(R.shape[0])
                #ctf.einsum('ijk -> i', ctf.TTTP(R, [None, V_vec_list[f], W_vec_list[f]]),out=alphas)
                ctf.MTTKRP(R, [alphas, V_vec_list[f], W_vec_list[f]], 0)
            else:
                alphas = ctf.einsum('ijk, j, k -> i', R, V_vec_list[f], W_vec_list[f])

            t1 = time.time()

            if use_MTTKRP:
                betas = ctf.tensor(R.shape[0])
                #ctf.einsum('ijk -> i', ctf.TTTP(omega, [None, V_vec_list[f]*V_vec_list[f], W_vec_list[f]*W_vec_list[f]]),out=betas)
                ctf.MTTKRP(omega, [betas, V_vec_list[f]*V_vec_list[f], W_vec_list[f]*W_vec_list[f]], 0)
            else:
                betas = ctf.einsum('ijk, j, j, k, k -> i', omega, V_vec_list[f], V_vec_list[f], W_vec_list[f], W_vec_list[f])

            t2 = time.time()

            U_vec_list[f] = alphas / (regParam + betas)
            U[:,f] = U_vec_list[f]

            if glob_comm.rank() == 0 and status_prints == True:
                print('ctf.einsum() takes {}'.format(t1-t0))
                print('ctf.einsum() takes {}'.format(t2-t1))


            # update V[:,f]
            if glob_comm.rank() == 0 and status_prints == True:
                print('updating V[:,{}]'.format(f))
            if use_MTTKRP:
                alphas = ctf.tensor(R.shape[1])
                #ctf.einsum('ijk -> j', ctf.TTTP(R, [U_vec_list[f], None, W_vec_list[f]]),out=alphas)
                ctf.MTTKRP(R, [U_vec_list[f], alphas, W_vec_list[f]], 1)
            else:
                alphas = ctf.einsum('ijk, i, k -> j', R, U_vec_list[f], W_vec_list[f])

            if use_MTTKRP:
                betas = ctf.tensor(R.shape[1])
                #ctf.einsum('ijk -> j', ctf.TTTP(omega, [U_vec_list[f]*U_vec_list[f], None, W_vec_list[f]*W_vec_list[f]]),out=betas)
                ctf.MTTKRP(omega, [U_vec_list[f]*U_vec_list[f], betas, W_vec_list[f]*W_vec_list[f]], 1)
            else:
                betas = ctf.einsum('ijk, i, i, k, k -> j', omega, U_vec_list[f], U_vec_list[f], W_vec_list[f], W_vec_list[f])

            V_vec_list[f] = alphas / (regParam + betas)
            V[:,f] = V_vec_list[f]


            if glob_comm.rank() == 0 and status_prints == True:
                print('updating W[:,{}]'.format(f))
            if use_MTTKRP:
                alphas = ctf.tensor(R.shape[2])
                #ctf.einsum('ijk -> k', ctf.TTTP(R, [U_vec_list[f], V_vec_list[f], None]),out=alphas)
                ctf.MTTKRP(R, [U_vec_list[f], V_vec_list[f], alphas], 2)
            else:
                alphas = ctf.einsum('ijk, i, j -> k', R, U_vec_list[f], V_vec_list[f])

            if use_MTTKRP:
                betas = ctf.tensor(R.shape[2])
                #ctf.einsum('ijk -> k', ctf.TTTP(omega, [U_vec_list[f]*U_vec_list[f], V_vec_list[f]*V_vec_list[f], None]),out=betas)
                ctf.MTTKRP(omega, [U_vec_list[f]*U_vec_list[f], V_vec_list[f]*V_vec_list[f], betas], 2)
            else:
                betas = ctf.einsum('ijk, i, i, j, j -> k', omega, U_vec_list[f], U_vec_list[f], V_vec_list[f], V_vec_list[f])

            W_vec_list[f] = alphas / (regParam + betas)
            W[:,f] = W_vec_list[f]



            t_tttp = ctf.timer("ccd_TTTP")
            t_tttp.start()
            R -= ctf.TTTP(omega, [U_vec_list[f], V_vec_list[f], W_vec_list[f]])

            if f+1 < r:
                R += ctf.TTTP(omega, [U_vec_list[f+1], V_vec_list[f+1], W_vec_list[f+1]])

            t_tttp.stop()
        t_iR_upd.stop()

        ite += 1

        if ite == num_iter or time.time() - t_before_loop - t_obj_calc > time_limit:
            break

    t_CCD.end()
    duration = time.time() - t_before_loop - t_obj_calc
    [objective, RMSE] = get_objective(T,U,V,W,omega,regParam)

    if glob_comm.rank() == 0:
        print('CCD amortized seconds per sweep: {}'.format(duration/ite))
        print('Time/CCD Iteration: {}'.format(duration/ite))
        print('Objective after',duration,'seconds (',ite,'iterations) is: {}'.format(objective))
        print('RMSE after',duration,'seconds (',ite,'iterations) is: {}'.format(RMSE))