Esempio n. 1
0
    def __init__(self, logger_class=None, pattern="T0"):
        self.ready = False
        self.looper_data: VessData = None
        if logger_class:
            self.logger = logger_class()
        else:
            self.logger = LooperLogger()

        self.risk = None
        self.strategy = None
        self.interface = LocalLooper(logger=self.logger, strategy=self.strategy, risk=self.risk)
        self.params = dict()
        self.looper_pattern = pattern

        """
        _data_status : 数据状态, 准备就绪时候应该被修改为True
        _looper_status: 回测状态, 分为五个
            "unready": 未就绪
            "ready":就绪
            "running": 运行中
            "stopped":暂停
            "finished":结束
        _strategy_status: 策略状态, 载入后应该被修改True
        _risk_status: "风控状态"
        """
        self._data_status = False
        self._looper_status = "unready"
        self._strategy_status = False
        self._risk_status = True
Esempio n. 2
0
    def __init__(self, logger_class=None, pattern="T0"):
        self.ready = False

        """
        回测数据安放点/Data point
        """
        self.looper_data: [VessData] = []

        """
        创建日志调试器
        """
        if logger_class:
            self.logger = logger_class()
        else:
            self.logger = LooperLogger()
        """ 
        账户级别的风险控制
        """
        self.risk = None

        """
        回测主要接口
        """
        self.interface = LocalLooper(logger=self.logger, risk=self.risk)

        """
        参数配置
        """
        self.params = dict()
        """
        回测模式
        """
        self.looper_pattern = pattern

        """
        _data_status : 数据状态, 准备就绪时候应该被修改为True
        _looper_status: 回测状态, 分为五个
            "unready": 未就绪
            "ready":就绪
            "running": 运行中
            "stopped":暂停
            "finished":结束
        _strategy_status: 策略状态, 载入后应该被修改True
        _risk_status: "风控状态"
        """
        self._data_status = False
        self._looper_status = "unready"
        self._strategy_status = False
        self._risk_status = True

        self.start_time = None
Esempio n. 3
0
 def __init__(self, pattern="T0"):
     self.ready = False
     self.looper_data: VessData = None
     self.logger = LooperLogger()
     self.account = Account()
     self.risk = None
     self.strategy = None
     self.interface = LocalLooper(self.strategy,
                                  risk=self.risk,
                                  account=self.account,
                                  logger=self.logger)
     self.params = dict()
     self.looper_pattern = pattern
Esempio n. 4
0
class Vessel:
    """
    策略运行容器

    本地回测与在线数据回测
    >> 基于在线数据推送的模式 是否可以减少本机器的内存使用量

    """

    def __init__(self, logger_class=None, pattern="T0"):
        self.ready = False
        self.looper_data: VessData = None
        if logger_class:
            self.logger = logger_class()
        else:
            self.logger = LooperLogger()

        self.risk = None
        self.strategy = None
        self.interface = LocalLooper(logger=self.logger, strategy=self.strategy, risk=self.risk)
        self.params = dict()
        self.looper_pattern = pattern

        """
        _data_status : 数据状态, 准备就绪时候应该被修改为True
        _looper_status: 回测状态, 分为五个
            "unready": 未就绪
            "ready":就绪
            "running": 运行中
            "stopped":暂停
            "finished":结束
        _strategy_status: 策略状态, 载入后应该被修改True
        _risk_status: "风控状态"
        """
        self._data_status = False
        self._looper_status = "unready"
        self._strategy_status = False
        self._risk_status = True

    def add_strategy(self, strategy):
        """ 添加策略到本容器 """
        self.strategy = strategy

        self.interface.update_strategy(strategy)
        self._strategy_status = True

        self.check_if_ready()

    def add_data(self, data):
        """ 添加data到本容器, 如果没有经过处理 """
        d = VessData(data)
        self.looper_data = d
        self._data_status = True
        self.check_if_ready()

    def check_if_ready(self):
        if self._data_status and self._strategy_status and self._risk_status:
            self._looper_status = "ready"
        self.ready = True

    def add_risk(self, risk):
        """ 添加风控 """
        self._risk_status = True
        self.interface.update_risk(risk)
        self.check_if_ready()

    def set_params(self, params):
        if not isinstance(params, dict):
            raise ValueError(f"配置信息格式出现问题, 你当前的配置信息为 {type(params)}")
        self.params = params

    def get_result(self):
        """ 计算回测结果,生成回测报告 """
        return self.interface.account.result

    def letsgo(self, parmas, ready):
        if self.looper_data.init_flag:
            self.logger.info(f"产品: {self.looper_data.product}")
            self.logger.info(f"回测模式: {self.looper_pattern}")
        for x in range(self.looper_data.length):
            if ready:
                """ 如果处于就绪状态 那么直接开始继续回测 """
                try:
                    p = next(self.looper_data)
                    self.interface(p, parmas)

                except StopIteration:
                    self._looper_status = "finished"
                    break
            else:
                """ 如果处于未就绪状态 那么暂停回测 """
                sleep(1)
        self.logger.info("回测结束,正在生成回测报告")

    def suspend_looper(self):
        """ 暂停回测 """
        self.ready = False
        self._looper_status = "stopped"

    def enable_looper(self):
        """ 继续回测 """
        self.ready = True
        self._looper_status = "running"

    @property
    def looper_status(self):
        return self._looper_status

    @property
    def risk_status(self):
        return self._risk_status

    @property
    def data_status(self):
        return self._data_status

    @property
    def strategy_status(self):
        return self._strategy_status

    @property
    def status(self):
        return (self._looper_status, self._risk_status, self._strategy_status, self._data_status)

    def run(self):
        """ 开始运行回测 """
        p = Thread(name="looper", target=self.letsgo, args=(self.params, self.ready,))
        p.start()
        p.join()

    def __repr__(self):
        return "Backtesting Vessel powered by ctpbee current version: 0.1"
Esempio n. 5
0
class Vessel:
    """
    策略运行容器

    本地回测与在线数据回测
    >> 基于在线数据推送的模式 是否可以减少本机器的内存使用量

    """
    def __init__(self, logger_class=None, pattern="T0"):
        self.ready = False
        """
        回测数据安放点/Data point
        """
        self.looper_data: [VessData] = []
        """
        创建日志调试器
        """
        if logger_class:
            self.logger = logger_class()
        else:
            self.logger = LooperLogger()
        """ 
        账户级别的风险控制
        """
        self.risk = None
        """
        回测主要接口
        """
        self.interface = LocalLooper(logger=self.logger, risk=self.risk)
        """
        参数配置
        """
        self.params = dict()
        """
        回测模式
        """
        self.looper_pattern = pattern
        """
        _data_status : 数据状态, 准备就绪时候应该被修改为True
        _looper_status: 回测状态, 分为五个
            "unready": 未就绪
            "ready":就绪
            "running": 运行中
            "stopped":暂停
            "finished":结束
        _strategy_status: 策略状态, 载入后应该被修改True
        _risk_status: "风控状态"
        """
        self._data_status = False
        self._looper_status = "unready"
        self._strategy_status = False
        self._risk_status = True

        self.start_time = None

    def add_strategy(self, strategy: LooperApi):
        """ 添加策略到本容器 """
        if not isinstance(strategy, LooperApi):
            raise ValueError(
                f"你传入的策略类型出现问题,期望: LooperApi, 当前:{type(strategy)}")
        self.interface.update_strategy(strategy)
        self._strategy_status = True
        self.check_if_ready()

    def add_data(self, *data):
        """
        注意此处的Add Data,可以添加多个数据源 ---> 他们的长度应该是一开始就对齐!!!
        : ---> 必须在时间戳上进行对齐, 否则数据进行回放会出现问题。
        """
        d = VessData(*data)
        self.looper_data.append(d)
        self._data_status = True
        self.check_if_ready()

    def check_if_ready(self):
        if self._data_status and self._strategy_status and self._risk_status:
            self._looper_status = "ready"
        self.ready = True

    def add_risk(self, risk):
        """ 添加风控 """
        self._risk_status = True
        self.interface.update_risk(risk)
        self.check_if_ready()

    def add_basic_info(self, info):
        """ 添加基础手续费以及size_map等信息 """
        self.interface.account.basic_info = info

    def set_params(self, params):
        """
        设置参数
        :param params: 参数值 dict
        :return:
        """
        if not isinstance(params, dict):
            raise ValueError(f"配置信息格式出现问题, 你当前的配置信息为 {type(params)}")
        self.params = params

    def get_result(self, report: bool = False, **kwargs):
        """
        计算回测结果,生成回测报告
        :param report: bool ,指定是否输出策略报告
        :param auto_open: bool, 是否让浏览器自动打开回测报告
        :param zh:bpol, 是否输出成中文报告
        """
        strategys = list(self.interface.strategy_mapping.keys())
        end_time = datetime.now()
        """
        账户数据
        """
        account_data = self.interface.account.get_mapping("balance")
        """
        耗费时间
        """
        cost_time = f"{str(end_time.hour - self.start_time.hour)}" \
                    f"h {str(end_time.minute - self.start_time.minute)}m " \
                    f"{str(end_time.second - self.start_time.second)}s"
        """
        每日盈利
        """
        net_pnl = self.interface.account.get_mapping("net_pnl")
        """
        成交单数据
        """
        trade_data = list(
            map(dumps, self.interface.traded_order_mapping.values()))
        position_data = self.interface.position_detail
        if report:
            path = render_result(self.interface.account.result,
                                 trade_data=trade_data,
                                 strategy=strategys,
                                 net_pnl=net_pnl,
                                 account_data=account_data,
                                 datetimed=end_time,
                                 position_data=position_data,
                                 cost_time=cost_time,
                                 **kwargs)
            print(f"请复制下面的路径到浏览器打开----> \n {path}")
            return path
        return self.interface.account.result

    def letsgo(self, parmas, ready):
        """
        开始进行回测
        :param parmas:  参数
        :param ready:
        :return:
        """
        if False not in [x.init_flag for x in self.looper_data]:
            # self.logger.info(f"产品: {self.looper_data.product}")
            self.logger.info(f"回测模式: {self.looper_pattern}")
        while True:
            if ready:
                """ 如果处于就绪状态 那么直接开始继续回测 """
                try:
                    """ 注意开始回放每个数据源的数据 """
                    for _origin_data in self.looper_data:
                        p = next(_origin_data)
                        self.interface(p, parmas)
                except StopIteration:
                    self._looper_status = "finished"
                    self.logger.info("回测结束了, 正在终止")
                    break
            else:
                """ 如果处于未就绪状态 那么暂停回测 """
                print("数据未就绪")
                sleep(1)
        self.logger.info("回测结束,正在生成回测报告")

    def suspend_looper(self):
        """ 暂停回测 """
        self.ready = False
        self._looper_status = "stopped"

    def enable_looper(self):
        """ 继续回测 """
        self.ready = True
        self._looper_status = "running"

    @property
    def looper_status(self):
        return self._looper_status

    @property
    def risk_status(self):
        return self._risk_status

    @property
    def data_status(self):
        return self._data_status

    @property
    def strategy_status(self):
        return self._strategy_status

    @property
    def status(self):
        return (self._looper_status, self._risk_status, self._strategy_status,
                self._data_status)

    def run(self):
        """ 开始运行回测 """
        self.start_time = datetime.now()
        p = Thread(name="looper",
                   target=self.letsgo,
                   args=(
                       self.params,
                       self.ready,
                   ))
        p.start()
        p.join()

    def __repr__(self):
        return "ctpbee Backtesting Vessel powered by ctpbee current version: 0.1"
Esempio n. 6
0
class Vessel:
    """
    策略运行容器

    本地回测与在线数据回测
    >> 基于在线数据推送的模式 是否可以减少本机器的内存使用量

    """
    def __init__(self, pattern="T0"):
        self.ready = False
        self.looper_data: VessData = None
        self.logger = LooperLogger()
        self.account = Account()
        self.risk = None
        self.strategy = None
        self.interface = LocalLooper(logger=self.logger,
                                     strategy=self.strategy,
                                     risk=self.risk,
                                     account=self.account)
        self.params = dict()
        self.looper_pattern = pattern
        """
        _data_status : 数据状态, 准备就绪时候应该被修改为True
        _looper_status: 回测状态, 分为五个
            "unready": 未就绪
            "ready":就绪
            "running": 运行中
            "stopped":暂停
            "finished":结束
        _strategy_status: 策略状态, 载入后应该被修改True
        _risk_status: "风控状态"
        """
        self._data_status = False
        self._looper_status = "unready"
        self._strategy_status = False
        self._risk_status = False

    def add_strategy(self, strategy):
        """ 添加策略到本容器 """
        self.strategy = strategy
        try:
            self.interface.update_strategy(strategy)
            self._strategy_status = True
        except Exception:
            self._strategy_status = False
        self.check_if_ready()

    def add_data(self, data):
        """ 添加data到本容器, 如果没有经过处理 """
        d = VessData(data)
        self.looper_data = d
        self._data_status = True
        self.check_if_ready()

    def check_if_ready(self):
        if self._data_status and self._strategy_status and self._risk_status:
            self._looper_status = "ready"

    def add_risk(self, risk):
        """ 添加风控 """
        self._risk_status = True
        self.interface.update_risk(risk)
        self.check_if_ready()

    def cal_result(self):
        """ 计算回测结果,生成回测报告 """
        return None

    def letsgo(self, parmas, ready):
        if self.looper_data.init_flag:
            self.logger.info(f"数据提供商: {self.looper_data.provider}")
            self.logger.info(f"产品: {self.looper_data.product}")
            self.logger.info(f"回测模式: {self.looper_pattern}")
        while True:
            if ready:
                """ 如果处于就绪状态 那么直接开始继续回测 """
                try:
                    p = next(self.looper_data)
                    self.interface(p, parmas)
                except StopIteration:
                    self._looper_status = "finished"
                    break
            else:
                """ 如果处于未就绪状态 那么暂停回测 """
                sleep(1)
        self.logger.info("回测结束,正在生成回测报告")
        result = self.cal_result()
        return result

    def suspend_looper(self):
        """ 暂停回测 """
        self.ready = False
        self._looper_status = "stopped"

    def enable_looper(self):
        """ 继续回测 """
        self.ready = True
        self._looper_status = "running"

    @property
    def looper_status(self):
        return self._looper_status

    @property
    def risk_status(self):
        return self._risk_status

    @property
    def data_status(self):
        return self._data_status

    @property
    def strategy_status(self):
        return self._strategy_status

    @property
    def status(self):
        return (self._looper_status, self._risk_status, self._strategy_status,
                self._data_status)

    def run(self):
        """ 开始运行回测 """
        p = Process(name="looper",
                    target=self.letsgo,
                    args=(
                        self.params,
                        self.ready,
                    ))
        p.start()