Esempio n. 1
0
    def __init__(self):

        # Initialize all controllers
        self.driveLeftMaster = Talon(kDriveTrain.lmId)
        self.driveLeftSlave = Talon(kDriveTrain.lsId)
        self.driveRightMaster = Talon(kDriveTrain.rmId)
        self.driveRightSlave = Talon(kDriveTrain.rsId)

        # Connect the slaves to the masters on each side
        self.driveLeftSlave.follow(self.driveLeftMaster)
        self.driveRightSlave.follow(self.driveRightMaster)

        # Makes sure both sides' controllers show green and use positive
        # values to move the bot forward.
        # CURRENTLY DISABLED WHEN USING WITH DifferentialDrive
        # self.driveLeftSlave.setInverted(False)
        # self.driveLeftMaster.setInverted(False)
        self.driveRightSlave.setInverted(True)
        self.driveRightMaster.setInverted(True)

        # Configures each master to use the attached Mag Encoders
        self.driveLeftMaster.configSelectedFeedbackSensor(
            ctre.FeedbackDevice.CTRE_MagEncoder_Relative, 0, 0)
        self.driveRightMaster.configSelectedFeedbackSensor(
            ctre.FeedbackDevice.CTRE_MagEncoder_Relative, 0, 0)

        # Reverses the encoder direction so forward movement always
        # results in a positive increase in the encoder ticks.
        self.driveLeftMaster.setSensorPhase(True)
        self.driveRightMaster.setSensorPhase(True)

        # Throw data on the SmartDashboard so we can work with it.
        SD.putNumber('Left Quad Pos.',
                     self.driveLeftMaster.getQuadraturePosition())
        SD.putNumber('Right Quad Pos.',
                     self.driveRightMaster.getQuadraturePosition())

        # these may give the derivitive an integral of the PID once
        # they are set.  For now, they just show 0
        SD.putNumber('Left Derivative',
                     self.driveLeftMaster.getErrorDerivative(0))
        SD.putNumber('Left Integral',
                     self.driveLeftMaster.getIntegralAccumulator(0))

        self.leftVel = None
        self.leftPos = None
        self.rightVel = None
        self.rightPos = None

        # self.driveLeftMaster.config_kP(0, .3, 10)
        # kP = self.driveLeftMaster.configGetParameter(
        #     self.driveLeftMaster.ParamEnum.eProfileParamSlot_P, 0, 10)

        # SmartDashboard.putNumber('Left Proportional', kP)

        self.driveControllerLeft = SpeedControllerGroup(self.driveLeftMaster)
        self.driveControllerRight = SpeedControllerGroup(self.driveRightMaster)
        self.driveControllerRight.setInverted(True)
        self.drive = DifferentialDrive(self.driveControllerLeft,
                                       self.driveControllerRight)
Esempio n. 2
0
 def __init__(self, robot):
     
     self.robot = robot
     
     self.leftArm = Talon(self.robot.kCubeGrabber['left_arm'])
     self.rightArm = Talon(self.robot.kCubeGrabber['right_arm'])
     
     self.armUS = wpilib.AnalogInput(self.robot.kCubeGrabber['ultra_sonic'])
     self.armSwitch = wpilib.DigitalInput(self.robot.kCubeGrabber['switch'])
     
     self.armClosePosition = self.robot.kCubeGrabber['close']
     self.armOpenPosition = self.robot.kCubeGrabber['open']
     
     self.driverTwo = self.robot.cStick
     
     self.armSolenoid = wpilib.Solenoid(self.robot.pneumaticControlModuleCANID, self.robot.kCubeGrabber['solenoid'])
     
     """
     Initializes the predetermined distances for grabber/cube interaction.
     """
     self.spinDistance = 12
     self.closeDistance = 7
     
     """
     Initializes Toggle Counts for the arm functionality.
     """
     self.armModeToggleCount = 2
     self.openToggleCount = 3
Esempio n. 3
0
    def initialize(self):
        timeout = 15
        SmartDashboard.putNumber("Wrist Power Set", 0)
        SmartDashboard.putNumber("Gravity Power", 0)

        self.F = 0.25
        SmartDashboard.putNumber("F Gain", self.F)

        #self.angle = 0
        #SmartDashboard.putNumber("angle", self.angle)

        self.range = -1200

        self.povPressed = False

        self.maxVolts = 10
        self.wristUpVolts = 4
        self.wristDownVolts = -4
        SmartDashboard.putNumber("Wrist Up Volts", self.wristUpVolts)
        SmartDashboard.putNumber("Wrist Down Volts", self.wristDownVolts)

        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)

        #below is the talon on the intake
        self.intake = Talon(map.intake)
        self.intake.setNeutralMode(2)
        self.intake.configVoltageCompSaturation(self.maxVolts)

        self.intake.configContinuousCurrentLimit(20,
                                                 timeout)  #20 Amps per motor
        self.intake.configPeakCurrentLimit(
            30, timeout)  #30 Amps during Peak Duration
        self.intake.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.intake.enableCurrentLimit(True)

        #Talon motor object created
        self.wrist = Talon(map.wrist)

        if not wpilib.RobotBase.isSimulation():
            self.wrist.configFactoryDefault()

        self.wrist.setInverted(True)

        self.wrist.configVoltageCompSaturation(self.maxVolts)
        self.wrist.setNeutralMode(2)

        self.wrist.configClearPositionOnLimitF(True)

        self.wrist.configContinuousCurrentLimit(20,
                                                timeout)  #20 Amps per motor
        self.wrist.configPeakCurrentLimit(
            30, timeout)  #30 Amps during Peak Duration
        self.wrist.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.wrist.enableCurrentLimit(True)
Esempio n. 4
0
    def initialize(self):
        timeout = 15
        SmartDashboard.putNumber("Wrist Power Set", 0)
        self.lastMode = "unknown"
        self.sb = []
        self.targetPosUp = -300  #!!!!!
        self.targetPosDown = -1500  #!!!!!
        self.maxVolts = 10
        self.simpleGain = 0.57
        self.wristUpVolts = 5
        self.wristDownVolts = 2
        self.simpleGainGravity = 0.07
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        #below is the talon on the intake
        self.motor = Talon(map.intake)

        self.gPower = 0
        self.input = 0

        self.motor.configContinuousCurrentLimit(20,
                                                timeout)  #15 Amps per motor
        self.motor.configPeakCurrentLimit(
            30, timeout)  #20 Amps during Peak Duration
        self.motor.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.motor.enableCurrentLimit(True)

        #Talon motor object created
        self.wrist = Talon(map.wrist)
        if not wpilib.RobotBase.isSimulation():
            self.wrist.configFactoryDefault()
        self.wrist.configVoltageCompSaturation(self.maxVolts)
        self.wrist.setInverted(True)
        self.wrist.setNeutralMode(2)
        self.motor.setNeutralMode(2)
        self.motor.configVoltageCompSaturation(self.maxVolts)

        self.wrist.configClearPositionOnLimitF(True)

        #MOTION MAGIC CONFIG
        self.loops = 0
        self.timesInMotionMagic = 0

        #self.wrist.setSelectedSensorPosition(0, self.kPIDLoopIdx, self.kTimeoutMs)

        [self.kP, self.kI, self.kD] = [0, 0, 0]
        cargoController = PIDController(self.kP,
                                        self.kI,
                                        self.kD,
                                        source=self.getAngle,
                                        output=self.__setGravity__)
        self.cargoController = cargoController
        self.cargoController.disable()
Esempio n. 5
0
    def initialize(self):
        timeout = 15
        self.wristPowerSet = 0
        SmartDashboard.putNumber("Wrist Power Set", self.wristPowerSet)

        self.maxVolts = 10
        self.wristUpVolts = 4
        self.wristDownVolts = -4

        self.xbox = oi.getJoystick(2)
        self.out = 0

        #below is the talon on the intake
        self.intake = Talon(map.intake)
        self.intake.setNeutralMode(2)
        self.intake.configVoltageCompSaturation(self.maxVolts)

        self.intake.configContinuousCurrentLimit(20,
                                                 timeout)  #20 Amps per motor
        self.intake.configPeakCurrentLimit(
            30, timeout)  #30 Amps during Peak Duration
        self.intake.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.intake.enableCurrentLimit(True)

        #Talon motor object created
        self.wrist = Talon(map.wrist)

        if not wpilib.RobotBase.isSimulation():
            self.wrist.configFactoryDefault()

        self.wrist.setInverted(True)

        self.wrist.configVoltageCompSaturation(self.maxVolts)
        self.wrist.setNeutralMode(2)

        self.wrist.configClearPositionOnLimitF(True)

        self.wrist.configContinuousCurrentLimit(20,
                                                timeout)  #20 Amps per motor
        self.wrist.configPeakCurrentLimit(
            30, timeout)  #30 Amps during Peak Duration
        self.wrist.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.wrist.enableCurrentLimit(True)

        self.bottomSwitch = DI(map.bottomSwitch)
        self.topSwitch = DI(map.topSwitch)
Esempio n. 6
0
    def initialize(self):
        timeout = 15
        self.lastMode = "unknown"
        self.sb = []
        self.targetPosUp = -300 #!!!!!
        self.targetPosDown = -1500 #!!!!!
        self.maxVolts = 10
        self.simpleGain = 0.57
        self.wristUpVolts = 5
        self.wristDownVolts = 2
        self.simpleGainGravity = 0.07
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        self.motor = Talon(map.intake)


        self.motor.configContinuousCurrentLimit(20,timeout) #15 Amps per motor
        self.motor.configPeakCurrentLimit(30,timeout) #20 Amps during Peak Duration
        self.motor.configPeakCurrentDuration(100,timeout) #Peak Current for max 100 ms
        self.motor.enableCurrentLimit(True)


        self.wrist = Talon(map.wrist)
        if not wpilib.RobotBase.isSimulation():
            self.wrist.configFactoryDefault()
        self.wrist.setInverted(True)
        self.wrist.setNeutralMode(2)
        self.motor.setNeutralMode(2)
        self.motor.configVoltageCompSaturation(self.maxVolts)
        self.intakeSpeed = 0.9

        self.wrist.configClearPositionOnLimitF(True)

        #MOTION MAGIC CONFIG
        self.loops = 0
        self.timesInMotionMagic = 0
      

        self.wrist.setSelectedSensorPosition(0, self.kPIDLoopIdx, self.kTimeoutMs)
Esempio n. 7
0
    def __init__(self, robot):
        self.robot = robot

        self.lights = FROGLights()

        self.climbMotor = Talon(self.robot.kClimber['climb_motor'])
        self.checkSwitch = wpilib.DigitalInput(
            self.robot.kClimber['check_switch'])
        self.solenoid = wpilib.DoubleSolenoid(
            self.robot.pneumaticControlModuleCANID,
            self.robot.kClimber['solenoid'], self.robot.kClimber['solenoid_2'])

        self.driverOne = self.robot.dStick

        self.latchToggleCount = 2

        self.handlerState = 0

        self.climbMotor.configPeakOutputForward(1, 0)
        self.climbMotor.configPeakOutputReverse(-1, 0)
Esempio n. 8
0
    def initialize(self):
        #makes control objects
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        self.joystick1 = oi.getJoystick(1)

        #makes solenoid objects to be used in kick and slide functions
        self.kicker = Solenoid(map.hatchKick)
        self.slider = Solenoid(map.hatchSlide)

        self.maxVolts = 10
        timeout = 0

        self.wheels = Talon(map.hatchWheels)
        self.wheels.setNeutralMode(2)
        self.wheels.configVoltageCompSaturation(self.maxVolts)

        self.wheels.configContinuousCurrentLimit(20,
                                                 timeout)  #20 Amps per motor
        self.wheels.configPeakCurrentLimit(
            30, timeout)  #30 Amps during Peak Duration
        self.wheels.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.wheels.enableCurrentLimit(True)
        self.wheels.setInverted(True)

        self.powerIn = 0.9
        self.powerOut = -0.9

        #sets kicker and slide solenoids to in
        self.kick("in")
        self.slide("in")

        #starts lastkick/slide booleans
        self.lastKick = False
        self.lastSlide = False

        self.hasHatch = False

        self.outPower = 0
Esempio n. 9
0
 def __init__(self, robot):
     self.robot = robot
     
     self.elevator = Talon(self.robot.kElevator['elevator_motor'])
     self.elevator.setInverted(True)
     self.driverTwo = self.robot.cStick
     
     self.elevator.configSelectedFeedbackSensor(
     ctre.talonsrx.TalonSRX.FeedbackDevice.CTRE_MagEncoder_Relative, 0, 0)
     self.elevator.setSensorPhase(True)
     self.elevator.setSelectedSensorPosition(0, 0, 0)
     
     self.elevator.configPeakOutputForward(.2, 0)
     self.elevator.configPeakOutputReverse(-.95, 0)
     self.elevator.configNominalOutputForward(0, 0)        
     self.elevator.configNominalOutputReverse(0, 0)
     
     
     self.elevator.setSafetyEnabled(False)
     
     self.smartToggle = True
     self.smartPosition = 1
     
     super().__init__()
Esempio n. 10
0
    def initialize(self, robot):
        self.robot = robot
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)

        if map.robotId == map.astroV1:
            '''IDS AND DIRECTIONS FOR V1'''
            self.backLift = Talon(map.backLift)
            self.frontLift = Talon(map.frontLift)
            self.frontLift.setInverted(True)
            self.backLift.setInverted(True)

            self.wheelLeft = Victor(map.wheelLeft)
            self.wheelRight = Victor(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(True)

        else:
            '''IDS AND DIRECTIONS FOR V2'''
            self.backLift = Talon(map.frontLift)
            self.frontLift = Talon(map.backLift)
            self.frontLift.setInverted(False)
            self.backLift.setInverted(False)

            self.wheelLeft = Talon(map.wheelLeft)
            self.wheelRight = Talon(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(False)

        for motor in [self.backLift, self.frontLift]:
            motor.clearStickyFaults(0)
            motor.setSafetyEnabled(False)
            motor.configContinuousCurrentLimit(30, 0)  #Amps per motor
            motor.enableCurrentLimit(True)
            motor.configVoltageCompSaturation(10, 0)  #Sets saturation value
            motor.enableVoltageCompensation(
                True)  #Compensates for lower voltages

        for motor in [self.wheelLeft, self.wheelRight]:
            motor.clearStickyFaults(0)
            motor.setSafetyEnabled(False)
            motor.setNeutralMode(2)

        self.backSwitch = DigitalInput(map.backBottomSensor)
        self.frontSwitch = DigitalInput(map.frontBottomSensor)

        self.upSwitch = DigitalInput(map.upSensor)

        self.MAX_ANGLE = 2  #degrees
        self.TARGET_ANGLE = 0  #degrees
        self.climbSpeed = 0.5
        self.wheelSpeed = 0.5

        self.backHold = -0.15  #holds back stationary if extended ADJUST**
        self.frontHold = -0.1  #holds front stationary if extended

        self.kP = 0.4  #proportional gain for angle to power
        '''
        NEGATIVE POWER TO ELEVATOR LIFTS ROBOT, LOWERS LEGS
        POSITIVE POWER TO ELEVATOR LOWERS ROBOT, LIFTS LEGS

        NEGATIVE POWER TO WHEELS MOVES ROBOT BACKWARDS
        POSITIVE POWER TO WHEELS MOVES ROBOT FORWARD
        '''

        self.started = False
Esempio n. 11
0
    def __init__(self, robot):
        super().__init__('Drive')

        SmartDashboard.putNumber("DriveStraight_P", 0.075)
        SmartDashboard.putNumber("DriveStraight_I", 0.0)
        SmartDashboard.putNumber("DriveStraight_D", 0.42)
        # OLD GAINS 0.075, 0, 0.42

        SmartDashboard.putNumber("DriveAngle_P", 0.009)
        SmartDashboard.putNumber("DriveAngle_I", 0.0)
        SmartDashboard.putNumber("DriveAngle_D", 0.025)

        SmartDashboard.putNumber("DriveStraightAngle_P", 0.025)
        SmartDashboard.putNumber("DriveStraightAngle_I", 0.0)
        SmartDashboard.putNumber("DriveStraightAngle_D", 0.01)

        self.driveStyle = "Tank"
        SmartDashboard.putString("DriveStyle", self.driveStyle)
        #SmartDashboard.putData("Mode", self.mode)

        self.robot = robot
        self.lime = self.robot.limelight
        self.nominalPID = 0.15
        self.nominalPIDAngle = 0.22  # 0.11 - v2

        self.preferences = Preferences.getInstance()
        timeout = 0

        TalonLeft = Talon(map.driveLeft1)
        TalonRight = Talon(map.driveRight1)

        leftInverted = True
        rightInverted = False

        TalonLeft.setInverted(leftInverted)
        TalonRight.setInverted(rightInverted)

        VictorLeft1 = Victor(map.driveLeft2)
        VictorLeft2 = Victor(map.driveLeft3)
        VictorLeft1.follow(TalonLeft)
        VictorLeft2.follow(TalonLeft)

        VictorRight1 = Victor(map.driveRight2)
        VictorRight2 = Victor(map.driveRight3)
        VictorRight1.follow(TalonRight)
        VictorRight2.follow(TalonRight)

        for motor in [VictorLeft1, VictorLeft2]:
            motor.clearStickyFaults(timeout)
            motor.setSafetyEnabled(False)
            #motor.setExpiration(2 * self.robot.period)
            motor.setInverted(leftInverted)

        for motor in [VictorRight1, VictorRight2]:
            motor.clearStickyFaults(timeout)
            motor.setSafetyEnabled(False)
            #motor.setExpiration(2 * self.robot.period)
            motor.setInverted(rightInverted)

        for motor in [TalonLeft, TalonRight]:
            motor.setSafetyEnabled(False)
            #motor.setExpiration(2 * self.robot.period)
            motor.clearStickyFaults(timeout)  #Clears sticky faults

            motor.configContinuousCurrentLimit(40, timeout)  #15 Amps per motor
            motor.configPeakCurrentLimit(
                70, timeout)  #20 Amps during Peak Duration
            motor.configPeakCurrentDuration(
                300, timeout)  #Peak Current for max 100 ms
            motor.enableCurrentLimit(True)

            motor.configVoltageCompSaturation(12,
                                              timeout)  #Sets saturation value
            motor.enableVoltageCompensation(
                True)  #Compensates for lower voltages

            motor.configOpenLoopRamp(0.2,
                                     timeout)  #number of seconds from 0 to 1

        self.left = TalonLeft
        self.right = TalonRight

        self.navx = navx.AHRS.create_spi()

        self.leftEncoder = Encoder(map.leftEncoder[0], map.leftEncoder[1])
        self.leftEncoder.setDistancePerPulse(self.leftConv)
        self.leftEncoder.setSamplesToAverage(10)

        self.rightEncoder = Encoder(map.rightEncoder[0], map.rightEncoder[1])
        self.rightEncoder.setDistancePerPulse(self.rightConv)
        self.rightEncoder.setSamplesToAverage(10)

        self.zero()

        #PID for Drive
        self.TolDist = 0.1  #feet
        [kP, kI, kD, kF] = [0.027, 0.00, 0.20, 0.00]
        if wpilib.RobotBase.isSimulation():
            [kP, kI, kD, kF] = [0.25, 0.00, 1.00, 0.00]
        distController = PIDController(kP,
                                       kI,
                                       kD,
                                       kF,
                                       source=self.__getDistance__,
                                       output=self.__setDistance__)
        distController.setInputRange(0, 50)  #feet
        distController.setOutputRange(-0.6, 0.6)
        distController.setAbsoluteTolerance(self.TolDist)
        distController.setContinuous(False)
        self.distController = distController
        self.distController.disable()
        '''PID for Angle'''
        self.TolAngle = 2  #degrees
        [kP, kI, kD, kF] = [0.025, 0.00, 0.01, 0.00]
        if RobotBase.isSimulation():
            [kP, kI, kD, kF] = [0.005, 0.0, 0.01, 0.00]
        angleController = PIDController(kP,
                                        kI,
                                        kD,
                                        kF,
                                        source=self.__getAngle__,
                                        output=self.__setAngle__)
        angleController.setInputRange(-180, 180)  #degrees
        angleController.setOutputRange(-0.5, 0.5)
        angleController.setAbsoluteTolerance(self.TolAngle)
        angleController.setContinuous(True)
        self.angleController = angleController
        self.angleController.disable()

        self.k = 1
        self.sensitivity = 1

        SmartDashboard.putNumber("K Value", self.k)
        SmartDashboard.putNumber("sensitivity", self.sensitivity)

        self.prevLeft = 0
        self.prevRight = 0
Esempio n. 12
0
    def initialize(self, robot):
        self.state = -1
        self.robot = robot
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        self.usingNeo = True

        self.frontRetractStart = 0
        self.wheelsStart = 0
        self.wheelsStart2 = 0

        if self.usingNeo:
            # NOTE: If using Spark Max in PWM mode to control Neo brushless
            # motors you MUST configure the speed controllers manually
            # using a USB cable and the Spark Max client software!
            self.frontLift: Spark = Spark(map.frontLiftPwm)
            self.backLift: Spark = Spark(map.backLiftPwm)
            self.frontLift.setInverted(False)
            self.backLift.setInverted(False)

        if map.robotId == map.astroV1:
            if not self.usingNeo:
                '''IDS AND DIRECTIONS FOR V1'''
                self.backLift = Talon(map.backLift)
                self.frontLift = Talon(map.frontLift)
                self.frontLift.setInverted(True)
                self.backLift.setInverted(True)

            self.wheelLeft = Victor(map.wheelLeft)
            self.wheelRight = Victor(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(True)

        else:
            if not self.usingNeo:
                '''IDS AND DIRECTIONS FOR V2'''
                self.backLift = Talon(map.frontLift)
                self.frontLift = Talon(map.backLift)
                self.frontLift.setInverted(False)
                self.backLift.setInverted(False)
                self.backLift.setNeutralMode(2)
                self.frontLift.setNeutralMode(2)

            self.wheelLeft = Talon(map.wheelLeft)
            self.wheelRight = Talon(map.wheelRight)
            self.wheelRight.setInverted(True)
            self.wheelLeft.setInverted(False)

        if not self.usingNeo:
            for motor in [self.backLift, self.frontLift]:
                motor.clearStickyFaults(0)
                motor.setSafetyEnabled(False)
                motor.configContinuousCurrentLimit(30, 0)  #Amps per motor
                motor.enableCurrentLimit(True)
                motor.configVoltageCompSaturation(10,
                                                  0)  #Sets saturation value
                motor.enableVoltageCompensation(
                    True)  #Compensates for lower voltages

        for motor in [self.wheelLeft, self.wheelRight]:
            motor.clearStickyFaults(0)
            motor.setSafetyEnabled(False)
            motor.setNeutralMode(2)

        self.backSwitch = DigitalInput(map.backFloor)
        self.frontSwitch = DigitalInput(map.frontFloor)

        self.switchTopBack = DigitalInput(map.backTopSensor)
        self.switchTopFront = DigitalInput(map.frontTopSensor)

        self.switchBottomBack = DigitalInput(map.backBottomSensor)
        self.switchBottomFront = DigitalInput(map.frontBottomSensor)

        self.MAX_ANGLE = 2  #degrees
        self.TARGET_ANGLE = -1  #degrees
        self.climbSpeed = 0.9
        self.wheelSpeed = 0.9

        self.backHold = -0.10  #holds back stationary if extended ADJUST**
        self.frontHold = -0.10  #holds front stationary if extended

        self.kP = 0.35  #proportional gain for angle to power
        self.autoClimbIndicator = False
        '''
        NEGATIVE POWER TO ELEVATOR LIFTS ROBOT, LOWERS LEGS
        POSITIVE POWER TO ELEVATOR LOWERS ROBOT, LIFTS LEGS

        NEGATIVE POWER TO WHEELS MOVES ROBOT BACKWARDS
        POSITIVE POWER TO WHEELS MOVES ROBOT FORWARD
        '''

        self.started = False
Esempio n. 13
0
 def robotInit(self):
     self.maxVolts = 10
     self.joystick = Joystick(0)
     self.motor: Talon = Talon(31)
     self.motor.configClearPositionOnLimitF(True)
     self.motor.configVoltageCompSaturation(self.maxVolts)
Esempio n. 14
0
    def __init__(self, robot):

        self.robot = robot

        # Initialize all controllers
        self.driveLeftMaster = Talon(self.robot.kDriveTrain['left_master'])
        self.driveLeftSlave = Talon(self.robot.kDriveTrain['left_slave'])
        self.driveRightMaster = Talon(self.robot.kDriveTrain['right_master'])
        self.driveRightSlave = Talon(self.robot.kDriveTrain['right_slave'])

        wpilib.LiveWindow.addActuator("DriveTrain", "LeftMaster",
                                      self.driveLeftMaster)
        wpilib.LiveWindow.addActuator("DriveTrain", "RightMaster",
                                      self.driveRightMaster)

        # Connect the slaves to the masters on each side
        self.driveLeftSlave.follow(self.driveLeftMaster)
        self.driveRightSlave.follow(self.driveRightMaster)

        # Makes sure both sides' controllers show green and use positive
        # values to move the bot forward.
        self.driveLeftSlave.setInverted(False)
        self.driveLeftMaster.setInverted(False)
        self.driveRightSlave.setInverted(True)
        self.driveRightMaster.setInverted(True)
        """
        Initializes the count for toggling which side of the 
        robot will be considered the front when driving.
        """
        self.robotFrontToggleCount = 2

        # Configures each master to use the attached Mag Encoders
        self.driveLeftMaster.configSelectedFeedbackSensor(
            ctre.talonsrx.TalonSRX.FeedbackDevice.CTRE_MagEncoder_Relative, 0,
            0)
        self.driveRightMaster.configSelectedFeedbackSensor(
            ctre.talonsrx.TalonSRX.FeedbackDevice.CTRE_MagEncoder_Relative, 0,
            0)

        # Reverses the encoder direction so forward movement always
        # results in a positive increase in the encoder ticks.
        self.driveLeftMaster.setSensorPhase(True)
        self.driveRightMaster.setSensorPhase(True)

        # these supposedly aren't part of the WPI_TalonSRX class
        # self.driveLeftMaster.setSelectedSensorPostion(0, 0, 10)
        # self.driveRightMaster.setSelectedSensorPosition(0, 0, 10)

        # Throw data on the SmartDashboard so we can work with it.
        # SD.putNumber(
        #     'Left Quad Pos.',
        #     self.driveLeftMaster.getQuadraturePosition())
        # SD.putNumber(
        #     'Right Quad Pos.',
        #     self.driveRightMaster.getQuadraturePosition())

        self.leftVel = None
        self.leftPos = None
        self.rightVel = None
        self.rightPos = None
        self.leftMaxVel = 0
        self.rightMaxVel = 0
        self.leftMinVel = 0
        self.rightMinVel = 0

        # self.driveLeftMaster.config_kP(0, .3, 10)

        self.driveControllerLeft = SpeedControllerGroup(self.driveLeftMaster)
        self.driveControllerRight = SpeedControllerGroup(self.driveRightMaster)
        self.driveControllerRight.setInverted(True)
        self.drive = DifferentialDrive(self.driveControllerLeft,
                                       self.driveControllerRight)

        super().__init__()
Esempio n. 15
0
    def initialize(self):
        timeout = 15
        self.lastMode = "unknown"
        self.sb = []
        self.targetPosUp = -300 #!!!!!
        self.targetPosDown = -1500 #!!!!!
        self.maxVolts = 10
        self.simpleGain = 0.1
        self.wristUpVolts = 5
        self.wristDownVolts = 2
        self.simpleGainGravity = 0.05
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        self.motor = Talon(map.intake)


        self.motor.configContinuousCurrentLimit(20,timeout) #15 Amps per motor
        self.motor.configPeakCurrentLimit(30,timeout) #20 Amps during Peak Duration
        self.motor.configPeakCurrentDuration(100,timeout) #Peak Current for max 100 ms
        self.motor.enableCurrentLimit(True)


        self.wrist = Talon(map.wrist)
        if not wpilib.RobotBase.isSimulation():
            self.wrist.configFactoryDefault()
        self.wrist.setInverted(True)
        self.wrist.setNeutralMode(2)
        self.motor.setNeutralMode(2)
        self.motor.configVoltageCompSaturation(self.maxVolts)
        self.intakeSpeed = 0.9

        self.wrist.configClearPositionOnLimitF(True)

        #MOTION MAGIC CONFIG
        self.loops = 0
        self.timesInMotionMagic = 0
        #choose sensor
        self.wrist.configSelectedFeedbackSensor(
            Talon.FeedbackDevice.CTRE_MagEncoder_Relative,
            self.kPIDLoopIdx,
            self.kTimeoutMs,)
        self.wrist.setSensorPhase(False) #!!!!!

        # Set relevant frame periods to be at least as fast as periodic rate
        self.wrist.setStatusFramePeriod(
            Talon.StatusFrameEnhanced.Status_13_Base_PIDF0, 10, self.kTimeoutMs)
        self.wrist.setStatusFramePeriod(
            Talon.StatusFrameEnhanced.Status_10_MotionMagic, 10, self.kTimeoutMs)
        # set the peak and nominal outputs
        self.wrist.configNominalOutputForward(0, self.kTimeoutMs)
        self.wrist.configNominalOutputReverse(0, self.kTimeoutMs)
        self.wrist.configPeakOutputForward(0.6, self.kTimeoutMs)
        self.wrist.configPeakOutputReverse(-0.25, self.kTimeoutMs)

        self.kF = self.getFeedForward(self.getNumber("Wrist F Gain" , 0))
        self.kP = self.getNumber("Wrist kP" , 0)
        self.kI = self.getNumber("Wrist kI" , 0)
        self.kD = self.getNumber("Wrist kD" , 0)

        # set closed loop gains in slot0 - see documentation */
        self.wrist.selectProfileSlot(self.kSlotIdx, self.kPIDLoopIdx)
        self.wrist.config_kF(0, self.kF, self.kTimeoutMs)
        self.wrist.config_kP(0, self.kP, self.kTimeoutMs)
        self.wrist.config_kI(0, 0, self.kTimeoutMs)
        self.wrist.config_kD(0, 0, self.kTimeoutMs)
        # set acceleration and vcruise velocity - see documentation
        self.wrist.configMotionCruiseVelocity(400, self.kTimeoutMs) #!!!!!
        self.wrist.configMotionAcceleration(500, self.kTimeoutMs) #!!!!!
        # zero the sensor
        self.wrist.setSelectedSensorPosition(0, self.kPIDLoopIdx, self.kTimeoutMs)
Esempio n. 16
0
 def robotInit(self):
     self.joystick = Joystick(0)
     self.motor = Talon(10)
     self.motor.configClearPositionOnLimitF(True)
Esempio n. 17
0
    def initialize(self):
        timeout = 15
        SmartDashboard.putNumber("Wrist Power Set", 0)
        SmartDashboard.putNumber("Gravity Power", 0)
        self.sb = []
        self.targetPosUp = -300  #!!!!!
        self.targetPosDown = -1500  #!!!!!
        self.maxVolts = 10
        self.simpleGain = 0.57
        self.wristUpVolts = 5
        self.wristDownVolts = 2
        self.simpleGainGravity = 0.07
        self.xbox = oi.getJoystick(2)
        self.joystick0 = oi.getJoystick(0)
        #below is the talon on the intake
        self.motor = Talon(map.intake)

        self.input = 0
        self.input2 = 0
        self.lastCargoCommand = "unknown"

        self.motor.configContinuousCurrentLimit(20,
                                                timeout)  #15 Amps per motor
        self.motor.configPeakCurrentLimit(
            30, timeout)  #20 Amps during Peak Duration
        self.motor.configPeakCurrentDuration(
            100, timeout)  #Peak Current for max 100 ms
        self.motor.enableCurrentLimit(True)

        #Talon motor object created
        self.wrist = Talon(map.wrist)
        if not wpilib.RobotBase.isSimulation():
            self.wrist.configFactoryDefault()
        self.wrist.configVoltageCompSaturation(self.maxVolts)
        self.wrist.setInverted(True)
        self.wrist.setNeutralMode(2)
        self.motor.setNeutralMode(2)
        self.motor.configVoltageCompSaturation(self.maxVolts)

        self.wrist.configClearPositionOnLimitF(True)

        #MOTION MAGIC CONFIG
        self.loops = 0
        self.timesInMotionMagic = 0

        #self.wrist.setSelectedSensorPosition(0, self.kPIDLoopIdx, self.kTimeoutMs)

        self.F = 0
        #should be 0.4
        SmartDashboard.putNumber("F Gain", self.F)

        [self.kP, self.kI, self.kD, self.kF] = [0, 0, 0, 0]
        cargoController = PIDController(self.kP, self.kI, self.kD, self.kF,
                                        self, self)
        self.cargoController = cargoController
        self.cargoController.disable()

        self.pidValuesForMode = {
            "resting": [-50, self.kP, self.kI, self.kD, 0.15 / -50],
            "cargoship": [-28, self.kP, self.kI, self.kD, 0.0],
            "intake": [50, self.kP, self.kI, self.kD, 0.0],
            "rocket": [5, self.kP, self.kI, self.kD, 0.19 / 5],
        }