Esempio n. 1
0
    def test_concatenate(self):
        values = np.arange(12).reshape(3, 4)
        ax1 = Index("year", [2014, 2015, 2016])
        ax2 = Index("month", ["jan", "feb", "mar", "apr"])
        c = Cube([ax1, ax2],values)

        values = np.arange(12).reshape(4, 3)
        ax3 = Index("year", [2014, 2015, 2016])
        ax4 = Index("month", ["may", "jun", "jul", "aug"])
        d = Cube([ax4, ax3],values)

        e = concatenate([c, d], "month")
        self.assertEqual(e.ndim, 2)
        self.assertEqual(e.shape, (8, 3))  # the joined axis is always the first
        self.assertTrue(is_axis(e.axis("month")))

        e = concatenate([c, d], "month", as_index=True)
        self.assertEqual(e.ndim, 2)
        self.assertEqual(e.shape, (8, 3))
        self.assertTrue(is_indexed(e.axis("month")))

        # duplicate index values
        self.assertRaises(ValueError, concatenate, [c, c], "month", as_index=True)

        # broadcasting of an axis
        countries = Axis("country", ["DE", "FR"])
        f = d.insert_axis(countries)
        g = concatenate([c, f], "month", broadcast=True)
        self.assertEqual(g.ndim, 3)
        self.assertEqual(g.shape, (8, 3, 2))

        # if automatic broadcasting is not allowed
        self.assertRaises(LookupError, concatenate, [c, f], "month", broadcast=False)
Esempio n. 2
0
    def test_empty_cube(self):

        c = Cube(Axis("x", []),[] )
        self.assertEqual(c.ndim, 1)
        self.assertEqual(c.dims, ("x",))
        self.assertEqual(c.size, 0)

        c = Cube( [Axis("x", []), Axis("y", [])],np.empty((0, 0)))
        self.assertEqual(c.ndim, 2)
        self.assertEqual(c.dims, ("x", "y"))
        self.assertEqual(c.size, 0)
Esempio n. 3
0
    def test_create_scalar(self):

        c = Cube(None,1 )
        self.assertEqual(c.ndim, 0)
        self.assertEqual(c.size, 1)

        c = Cube(None, None)
        self.assertEqual(c.ndim, 0)
        self.assertEqual(c.size, 1)

        c = Cube([],1)
        self.assertEqual(c.ndim, 0)
        self.assertEqual(c.size, 1)
Esempio n. 4
0
def year_quarter_weekday_cube():
    """Creates 3D cube with axes "year", "quarter", "weekday" with shape (3, 4, 7)."""
    values = np.arange(3 * 4 * 7).reshape(3, 4, 7)
    ax1 = Index("year", [2014, 2015, 2016])
    ax2 = Index("quarter", ["Q1", "Q2", "Q3", "Q4"])
    ax3 = Index("weekday", ["mon", "tue", "wed", "thu", "fri", "sat", "sun"])
    return Cube([ax1, ax2, ax3],values)
Esempio n. 5
0
    def test_filter(self):
        """Testing function Cube.filter()"""
        c = year_quarter_cube()

        d = c.filter("year", [2014, 2018])  # 2018 is ignored
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[0]).all())

        year_filter = Axis("year", range(2010, 2015))
        d = c.filter(year_filter)
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[0]).all())

        year_filter = Index("year", range(2010, 2015))
        d = c.filter(year_filter)
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[0]).all())

        country_filter = Axis("country", ["DE", "FR"])  # this axis is ignored

        # filter by two axis filters
        quarter_filter = Index("quarter", ["Q1", "Q3"])
        d = c.filter([quarter_filter, country_filter, year_filter])
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[[0, 0], [0, 2]]).all())

        # cube as a filter
        yq_cube_filter = Cube.ones([quarter_filter, year_filter, country_filter])
        d = c.filter(yq_cube_filter)
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[[0, 0], [0, 2]]).all())

        # a collection of cubes as a filter
        y_cube_filter = Cube.ones([year_filter, country_filter])
        q_cube_filter = Cube.ones([country_filter, quarter_filter])
        d = c.filter([y_cube_filter, q_cube_filter])
        self.assertEqual(d.ndim, 2)
        self.assertTrue((d.values == c.values[[0, 0], [0, 2]]).all())
Esempio n. 6
0
    def test_squeeze(self):
        """Removes axes which have only one element."""
        ax1 = Index("A", [1])  # has only one element, thus can be collapsed
        ax2 = Index("B", [1, 2, 3])

        c = Cube([ax1, ax2],[[1, 2, 3]] )
        self.assertEqual(c.ndim, 2)
        d = c.squeeze()
        self.assertEqual(d.ndim, 1)
        self.assertEqual(d.axis(0).name, "B")

        c = Cube([ax2, ax1],[[1], [2], [3]])
        self.assertEqual(c.ndim, 2)
        d = c.squeeze()
        self.assertEqual(d.ndim, 1)
        self.assertEqual(d.axis(0).name, "B")

        ax3 = Index("C", [1])  # has only one element, thus can be collapsed
        c = Cube([ax1, ax3],[[1]])
        self.assertEqual(c.ndim, 2)
        d = c.squeeze()  # will collapse both axes
        self.assertEqual(d.ndim, 0)
Esempio n. 7
0
    def test_group_by(self):
        values = np.arange(12).reshape(3, 4)
        ax1 = Axis("year", [2014, 2014, 2014])
        ax2 = Axis("month", ["jan", "jan", "feb", "feb"])
        c = Cube([ax1, ax2],values)
        
        d = c.reduce(np.mean, group=0)  # average by year
        self.assertTrue(np.array_equal(d.values, np.array([[4, 5, 6, 7]])))
        self.assertTrue(is_indexed(d.axis(0)))
        self.assertEqual(len(d.axis(0)), 1)
        self.assertEqual(d.values.shape, (1, 4))  # axes with length of 1 are not collapsed

        d = c.reduce(np.sum, group=ax2.name, sort_grp=False)  # sum by month
        self.assertTrue(np.array_equal(d.values, np.array([[1, 5], [9, 13], [17, 21]])))
        self.assertTrue(np.array_equal(d.axis(ax2.name).values, ["jan", "feb"]))

        d = c.reduce(np.sum, group=ax2.name)  # sum by month, sorted by default
        self.assertTrue(np.array_equal(d.values, np.array([[5, 1], [13, 9], [21, 17]])))
        self.assertTrue(np.array_equal(d.axis(ax2.name).values, ["feb", "jan"]))
        self.assertTrue(is_indexed(d.axis(ax2.name)))
        self.assertEqual(len(d.axis(ax2.name)), 2)
        self.assertEqual(d.values.shape, (3, 2))
        
        # testing various aggregation functions using direct calling, e.g. c.sum(group=0),
        # or indirect calling, e.g. reduce(func=np.sum, group=0)
        funcs_indirect = [np.sum, np.mean, np.median, np.min, np.max, np.prod]
        funcs_direct = [c.sum, c.mean, c.median, c.min, c.max, c.prod]
        for func_indirect, func_direct in zip(funcs_indirect, funcs_direct):
            result = np.apply_along_axis(func_indirect, 0, c.values)
            d = c.reduce(func_indirect, group=ax1.name)
            self.assertTrue(np.array_equiv(d.values, result))
            e = func_direct(group=ax1.name)
            self.assertTrue(np.array_equiv(e.values, result))

        # testing function with extra parameters which cannot be passed as *args
        third_quartile = functools.partial(np.percentile, q=75)
        d = c.reduce(third_quartile, group=ax1.name)
        self.assertTrue(np.array_equiv(d.values, np.apply_along_axis(third_quartile, 0, c.values)))

        # the same but using lambda - this is actually simpler and more powerful way
        third_quartile_lambda = lambda sample: np.percentile(sample, q=75)
        d = c.reduce(third_quartile_lambda, group=ax1.name)
        self.assertTrue(np.array_equiv(d.values, np.apply_along_axis(third_quartile_lambda, 0, c.values)))
Esempio n. 8
0
    def test_create_cube(self):
    
        ax1 = Index("A", [10, 20, 30])
        ax2 = Index("B", ["a", "b", "c", "d"])
        ax3 = Index("C", [1.1, 1.2])

        # test Cube.zeros()
        a = Cube.zeros([ax1, ax3])
        self.assertTrue(np.array_equal(a.values, [[0, 0], [0, 0], [0, 0]]))

        # test Cube.ones()
        a = Cube.ones([ax1, ax3])
        self.assertTrue(np.array_equal(a.values, [[1, 1], [1, 1], [1, 1]]))

        # test Cube.full()
        a = Cube.full([ax1, ax3], np.inf)
        self.assertTrue(np.array_equal(a.values, [[np.inf, np.inf], [np.inf, np.inf], [np.inf, np.inf]]))

        # test Cube.full with NaNs
        # note: be careful because NaN != NaN so np.array_equal does not work
        a = Cube.full([ax1, ax3], np.nan)
        np.testing.assert_equal(a.values, [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]])
        
        # create one-dimensional cube
        values = np.arange(3)
        try:
            Cube((ax1,),values)
            Cube(ax1,values)  # no need to pass axes as collection if there is only one axis
        except Exception:
            self.fail("raised exception unexpectedly")
        
        # two-dimensional cubes
        values = np.arange(12).reshape(3, 4)
        try:
            Cube((ax1, ax2),values)
            Cube([ax1, ax2],values)
        except Exception:
            self.fail("raised exception unexpectedly")
Esempio n. 9
0
def year_quarter_cube():
    """Creates a sample 2D cube with axes "year" and "quarter" with shape (3, 4)."""
    values = np.arange(12).reshape(3, 4)
    ax1 = Index("year", [2014, 2015, 2016])
    ax2 = Index("quarter", ["Q1", "Q2", "Q3", "Q4"])
    return Cube([ax1, ax2],values)
Esempio n. 10
0
    def test_operations(self):
        values = np.arange(12).reshape(3, 4)
        axc1 = Index("a", [10, 20, 30])
        axc2 = Index("b", ["a", "b", "c", "d"])
        c = Cube([axc1, axc2],values)

        axd1 = Index("a", [10, 20, 30])
        axd2 = Index("b", ["a", "b", "c", "d"])
        d = Cube([axd1, axd2],values)

        x = c * d
        self.assertTrue(np.array_equal(x.values, values * values))

        e = Cube([Index("a", [10, 20, 30])],[0, 1, 2])

        x2 = c * e
        self.assertTrue(np.array_equal(x2.values, values * np.array([[0], [1], [2]])))

        c3 = Cube([Index("b", ["a", "b", "c", "d"])],[0, 1, 2, 3])
        x3 = c * c3
        self.assertTrue(np.array_equal(x3.values, values * np.array([0, 1, 2, 3])))

        c3 = Cube([Index("b", ["b", "a", "c", "d"])],[0, 1, 2, 3])
        x3 = c * c3
        self.assertTrue(np.array_equal(x3.values, values * np.array([1, 0, 2, 3])))

        values_d = np.array([0, 1])
        d = Cube([Index("d", ["d1", "d2"])],values_d)
        x = c * d
        self.assertEqual(x.ndim, 3)
        self.assertEqual(x.axis(0).name, "a")
        self.assertEqual(x.axis(1).name, "b")
        self.assertEqual(x.axis(2).name, "d")

        self.assertTrue(np.array_equal(x.values, values.reshape(3, 4, 1) * values_d))

        # operations with scalar
        d = 10
        x = c * d
        self.assertTrue(np.array_equal(x.values, values * d))
        x = d * c
        self.assertTrue(np.array_equal(x.values, values * d))
        
        # operations with numpy.ndarray
        d = np.arange(4)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values * d))
        x = d * c
        self.assertTrue(np.array_equal(x.values, values * d))
        
        d = np.arange(3).reshape(3, 1)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values * d))
        x = d * c
        self.assertTrue(np.array_equal(x.values, values * d))
        
        # matching Index and Series
        values_d = np.array([0, 1])
        d = Cube(Axis("a", [10, 10]),values_d)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values.take([0, 0], 0) * values_d[:, np.newaxis]))
        
        values_d = np.array([0, 1, 2, 3])
        d = Cube(Axis("b", ["d", "d", "c", "a"]),values_d)
        x = c * d
        self.assertTrue(np.array_equal(x.values, values.take([3, 3, 2, 0], 1) * values_d))

        # unary plus and minus
        c = year_quarter_cube()
        self.assertTrue(np.array_equal((+c).values, c.values))
        self.assertTrue(np.array_equal((-c).values, -c.values))

        c = year_quarter_cube() + 1  # +1 to prevent division by zero error
        import operator as op
        ops = [op.add, op.mul, op.floordiv, op.truediv, op.sub, op.pow, op.mod,  # arithmetics ops
               op.eq, op.ne, op.ge, op.le, op.gt, op.lt,  # comparison ops
               op.rshift, op.lshift]  # bitwise ops

        # operations with scalar
        d = 2
        for op in ops:
            self.assertTrue(np.array_equal(op(c, d).values, op(c.values, d)))
            self.assertTrue(np.array_equal(op(d, c).values, op(d, c.values)))

        # oprations with numpy array
        d = (np.arange(12).reshape(3, 4) / 6 + 1).astype(np.int)  # +1 to prevent division by zero error
        for op in ops:
            self.assertTrue(np.array_equal(op(c, d).values, op(c.values, d)))
            self.assertTrue(np.array_equal(op(d, c).values, op(d, c.values)))