Esempio n. 1
0
def test_batchnorm_infer():
    layer = BatchNormalization(input_dim = (4, 5, 5))
    layer.accumulate = True
    layer.initialize()
    x = T.tensor4("features")
    x_val = [np.ones((6, 4, 5, 5), dtype=theano.config.floatX) for _ in range(2)]
    x_val[0][0,0,0,0] = 10.0
    x_val[1][0,0,0,0] = -200.0
    y = layer.apply(x)

    dataset = IterableDataset(dict(features=x_val))
    data_stream = DataStream(dataset)
    cg = ComputationGraph([y])

    infer_population(data_stream, cg, 2)

    assert layer.use_population == True
    assert_allclose(layer.u.get_value(), np.array([0.72, 2, 2, 2]))
    assert_allclose(layer.n.get_value(), np.array([2]))
Esempio n. 2
0
def test_batchnorm_get_set():
    layer = BatchNormalization(input_dim = (4, 5, 5))
    layer.accumulate = True
    layer.initialize()
    x = T.tensor4("features")
    x_val = [np.ones((6, 4, 5, 5), dtype=theano.config.floatX) for _ in range(2)]
    x_val[0][0,0,0,0] = 10.0
    x_val[1][0,0,0,0] = -200.0
    y = layer.apply(x)

    dataset = IterableDataset(dict(features=x_val))
    data_stream = DataStream(dataset)
    cg = Model([y])
    infer_population(data_stream, cg, 2)
    values_dict = get_batchnorm_parameter_values(cg)
    assert len(values_dict.keys()) == 3
    assert_allclose(values_dict['/batchnormalization.n'], np.array([2]))
    values_dict['/batchnormalization.n'] = np.array([5.], dtype="float32")
    set_batchnorm_parameter_values(cg, values_dict)

    assert_allclose(layer.n.get_value(), np.array([5.]))
Esempio n. 3
0
def test_batchnorm_infer():
    layer = BatchNormalization(input_dim=(4, 5, 5))
    layer.accumulate = True
    layer.initialize()
    x = T.tensor4("features")
    x_val = [
        np.ones((6, 4, 5, 5), dtype=theano.config.floatX) for _ in range(2)
    ]
    x_val[0][0, 0, 0, 0] = 10.0
    x_val[1][0, 0, 0, 0] = -200.0
    y = layer.apply(x)

    dataset = IterableDataset(dict(features=x_val))
    data_stream = DataStream(dataset)
    cg = ComputationGraph([y])

    infer_population(data_stream, cg, 2)

    assert layer.use_population == True
    assert_allclose(layer.u.get_value(), np.array([0.72, 2, 2, 2]))
    assert_allclose(layer.n.get_value(), np.array([2]))
Esempio n. 4
0
def test_batchnorm_get_set():
    layer = BatchNormalization(input_dim=(4, 5, 5))
    layer.accumulate = True
    layer.initialize()
    x = T.tensor4("features")
    x_val = [
        np.ones((6, 4, 5, 5), dtype=theano.config.floatX) for _ in range(2)
    ]
    x_val[0][0, 0, 0, 0] = 10.0
    x_val[1][0, 0, 0, 0] = -200.0
    y = layer.apply(x)

    dataset = IterableDataset(dict(features=x_val))
    data_stream = DataStream(dataset)
    cg = Model([y])
    infer_population(data_stream, cg, 2)
    values_dict = get_batchnorm_parameter_values(cg)
    assert len(values_dict.keys()) == 3
    assert_allclose(values_dict['/batchnormalization.n'], np.array([2]))
    values_dict['/batchnormalization.n'] = np.array([5.], dtype="float32")
    set_batchnorm_parameter_values(cg, values_dict)

    assert_allclose(layer.n.get_value(), np.array([5.]))