Esempio n. 1
0
 def grad(x):
     ca.random.seed(random_seed)
     x = ca.array(np.reshape(x, input_shape))
     out = layer.fprop(ca.array(x), 'train')
     out_grad = ca.ones_like(out, dtype=np.float32)
     input_grad = layer.bprop(out_grad)
     return np.ravel(np.array(input_grad))
Esempio n. 2
0
 def grad(x):
     ca.random.seed(random_seed)
     x = ca.array(np.reshape(x, input_shape))
     out = layer.fprop(ca.array(x), 'train')
     out_grad = ca.ones_like(out, dtype=np.float32)
     input_grad = layer.bprop(out_grad)
     return np.ravel(np.array(input_grad))
Esempio n. 3
0
 def fun_grad(x, p_idx):
     param_array = layer.params[p_idx].array
     param_array *= 0
     param_array += ca.array(x)
     out = layer.fprop(ca.array(x0))
     y_grad = ca.ones_like(out, dtype=ca.float_)
     layer.bprop(y_grad)
     param_grad = np.array(layer.params[p_idx].grad())
     return param_grad.astype(np.float_)
Esempio n. 4
0
 def fun_grad(x, p_idx):
     param_array = layer._params[p_idx].array
     param_array *= 0
     param_array += ca.array(x)
     out = layer.fprop(ca.array(x0))
     y_grad = ca.ones_like(out, dtype=ca.float_)
     layer.bprop(y_grad)
     param_grad = np.array(layer._params[p_idx].grad())
     return param_grad.astype(np.float_)
Esempio n. 5
0
 def grad(x, *args):
     ca.random.seed(random_seed)
     p_idx = args[0]
     param_vals = layer._params[p_idx].array
     param_vals *= 0
     param_vals += ca.array(np.reshape(x, param_vals.shape))
     out = layer.fprop(ca.array(x0), 'train')
     out_grad = ca.ones_like(out, dtype=np.float32)
     layer.bprop(out_grad)
     param_grad = layer._params[p_idx].grad()
     return np.ravel(np.array(param_grad))
Esempio n. 6
0
 def grad(x, *args):
     ca.random.seed(random_seed)
     p_idx = args[0]
     param_vals = layer.params()[p_idx].values
     param_vals *= 0
     param_vals += ca.array(np.reshape(x, param_vals.shape))
     out = layer.fprop(ca.array(x0), 'train')
     out_grad = ca.ones_like(out, dtype=np.float32)
     layer.bprop(out_grad)
     param_grad = layer.params()[p_idx].grad
     return np.ravel(np.array(param_grad))
Esempio n. 7
0
 def fun_grad(x):
     y = layer.fprop(ca.array(x))
     y_grad = ca.ones_like(y, dtype=ca.float_)
     x_grad = np.array(layer.bprop(y_grad))
     return x_grad
Esempio n. 8
0
 def fun_grad(x):
     y = layer.fprop(ca.array(x))
     y_grad = ca.ones_like(y, dtype=ca.float_)
     x_grad = np.array(layer.bprop(y_grad))
     return x_grad