Esempio n. 1
0
    def _build_comms(index_handler, query_handler, streams_per_handle):
        # Communicator clique needs to include the union of workers hosting
        # query and index partitions
        workers = set(index_handler.workers)
        workers.update(query_handler.workers)

        comms = CommsContext(comms_p2p=True,
                             streams_per_handle=streams_per_handle)
        comms.init(workers=workers)
        return comms
Esempio n. 2
0
def test_comms_init_p2p_no_ucx():

    cluster = LocalCUDACluster()
    client = Client(cluster)   # noqa

    cb = CommsContext(comms_p2p=True)
    cb.init()

    assert cb.nccl_initialized is True
    assert cb.ucx_initialized is False
Esempio n. 3
0
def test_default_comms(client):

    try:
        cb = CommsContext(comms_p2p=True, client=client)
        cb.init()

        comms = default_comms()
        assert (cb.sessionId == comms.sessionId)

    finally:
        comms.destroy()
Esempio n. 4
0
    def _build_comms(index_futures, query_futures, streams_per_handle,
                     verbose):
        # Communicator clique needs to include the union of workers hosting
        # query and index partitions
        workers = set(map(lambda x: x[0], index_futures))
        workers.update(list(map(lambda x: x[0], query_futures)))

        comms = CommsContext(comms_p2p=True,
                             streams_per_handle=streams_per_handle,
                             verbose=verbose)
        comms.init(workers=workers)
        return comms
Esempio n. 5
0
def test_default_comms():

    cluster = LocalCUDACluster(threads_per_worker=1)
    client = Client(cluster)

    cb = CommsContext(comms_p2p=True, client=client)
    cb.init()

    comms = default_comms()
    assert(cb.sessionId == comms.sessionId)

    comms.destroy()
    client.close()
    cluster.close()
Esempio n. 6
0
    def _fit_with_colocality(self, X, y):
        input_futures = self.client.sync(extract_colocated_ddf_partitions,
                                         X, y, self.client)
        workers = list(input_futures.keys())

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=workers)

        worker_info = comms.worker_info(comms.worker_addresses)

        n_cols = X.shape[1]
        n_rows = 0

        self.rnks = dict()
        partsToSizes = dict()
        key = uuid1()
        for w, futures in input_futures.items():
            self.rnks[w] = worker_info[w]["r"]
            parts = [(self.client.submit(
                Ridge._func_get_size_cl,
                future,
                workers=[w],
                key="%s-%s" % (key, idx)).result())
                for idx, future in enumerate(futures)]

            partsToSizes[worker_info[w]["r"]] = parts
            for p in parts:
                n_rows = n_rows + p

        key = uuid1()
        self.linear_models = [(w, self.client.submit(
            Ridge._func_create_model,
            comms.sessionId,
            **self.kwargs,
            workers=[w],
            key="%s-%s" % (key, idx)))
            for idx, w in enumerate(workers)]

        key = uuid1()
        linear_fit = dict([(worker_info[wf[0]]["r"], self.client.submit(
            Ridge._func_fit_colocated,
            wf[1],
            input_futures[wf[0]],
            n_rows, n_cols,
            partsToSizes,
            worker_info[wf[0]]["r"],
            key="%s-%s" % (key, idx),
            workers=[wf[0]]))
            for idx, wf in enumerate(self.linear_models)])

        wait(list(linear_fit.values()))
        raise_exception_from_futures(list(linear_fit.values()))

        comms.destroy()

        self.local_model = self.linear_models[0][1].result()
        self.coef_ = self.local_model.coef_
        self.intercept_ = self.local_model.intercept_
Esempio n. 7
0
def test_recv_any_rank(n_trials, ucx_cluster):

    client = Client(ucx_cluster)

    try:

        cb = CommsContext(comms_p2p=True)
        cb.init()

        dfs = [
            client.submit(func_test_recv_any_rank,
                          cb.sessionId,
                          n_trials,
                          random.random(),
                          workers=[w]) for w in cb.worker_addresses
        ]

        wait(dfs)

        result = [x.result() for x in dfs]

        assert result

    finally:
        cb.destroy()
        client.close()
Esempio n. 8
0
    def fit(self, X):
        """
        Fits a distributed KMeans model
        :param X: dask_cudf.Dataframe to fit
        :return: This KMeans instance
        """
        gpu_futures = self.client.sync(extract_ddf_partitions, X)

        workers = list(map(lambda x: x[0], gpu_futures.items()))

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=workers)

        key = uuid1()
        kmeans_fit = [
            self.client.submit(KMeans.func_fit,
                               comms.sessionId,
                               wf[1],
                               **self.kwargs,
                               workers=[wf[0]],
                               key="%s-%s" % (key, idx))
            for idx, wf in enumerate(gpu_futures.items())
        ]

        wait(kmeans_fit)
        self.raise_exception_from_futures(kmeans_fit)

        comms.destroy()

        self.local_model = kmeans_fit[0].result()
        self.cluster_centers_ = self.local_model.cluster_centers_

        return self
Esempio n. 9
0
    def fit(self, X):
        """
        Fit a multi-node multi-GPU KMeans model

        Parameters
        ----------
        X : Dask cuDF DataFrame or CuPy backed Dask Array
        Training data to cluster.

        """

        data = DistributedDataHandler.create(X, client=self.client)
        self.datatype = data.datatype

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=data.workers)

        kmeans_fit = [
            self.client.submit(KMeans._func_fit,
                               comms.sessionId,
                               wf[1],
                               self.datatype,
                               **self.kwargs,
                               workers=[wf[0]],
                               pure=False)
            for idx, wf in enumerate(data.worker_to_parts.items())
        ]

        wait_and_raise_from_futures(kmeans_fit)

        comms.destroy()

        self._set_internal_model(kmeans_fit[0])

        return self
Esempio n. 10
0
def test_allreduce(cluster):

    client = Client(cluster)

    try:
        cb = CommsContext()
        cb.init()

        start = time.time()
        dfs = [
            client.submit(func_test_allreduce,
                          cb.sessionId,
                          random.random(),
                          workers=[w]) for wid, w in
            zip(range(len(cb.worker_addresses)), cb.worker_addresses)
        ]
        wait(dfs)

        print("Time: " + str(time.time() - start))

        print(str(list(map(lambda x: x.result(), dfs))))

        assert all(list(map(lambda x: x.result(), dfs)))

    finally:
        cb.destroy()
        client.close()
Esempio n. 11
0
def test_send_recv(n_trials):

    cluster = LocalCUDACluster(threads_per_worker=1)
    client = Client(cluster)

    cb = CommsContext(comms_p2p=True)
    cb.init()

    cb = default_comms()

    start = time.time()
    dfs = [client.submit(func_test_send_recv,
                         cb.sessionId,
                         n_trials,
                         random.random(),
                         workers=[w])
           for wid, w in zip(range(len(cb.worker_addresses)),
                             cb.worker_addresses)]

    wait(dfs)
    print("Time: " + str(time.time() - start))

    result = list(map(lambda x: x.result(), dfs))

    print(str(result))

    assert(result)

    cb.destroy()
    client.close()
    cluster.close()
Esempio n. 12
0
def test_recv_any_rank(n_trials, ucx_cluster):

    client = Client(ucx_cluster)

    try:

        cb = CommsContext(comms_p2p=True)
        cb.init()

        dfs = [
            client.submit(func_test_recv_any_rank,
                          cb.sessionId,
                          n_trials,
                          random.random(),
                          workers=[w]) for wid, w in
            zip(range(len(cb.worker_addresses)), cb.worker_addresses)
        ]

        wait(dfs)

        result = list(map(lambda x: x.result(), dfs))

        assert (result)

    finally:
        cb.destroy()
        client.close()
Esempio n. 13
0
def test_comms_init_no_p2p():

    cluster = LocalCUDACluster(threads_per_worker=1)
    client = Client(cluster)  # noqa

    cb = CommsContext(comms_p2p=False)
    cb.init()

    assert cb.nccl_initialized is True
    assert cb.ucx_initialized is False

    cb.destroy()
Esempio n. 14
0
def test_comms_init_no_p2p(client):

    try:
        cb = CommsContext(comms_p2p=False)
        cb.init()

        assert cb.nccl_initialized is True
        assert cb.ucx_initialized is False

    finally:

        cb.destroy()
Esempio n. 15
0
def test_comms_init_p2p_no_ucx(cluster):

    client = Client(cluster)

    try:
        cb = CommsContext(comms_p2p=True)
        cb.init()

        assert cb.nccl_initialized is True
        assert cb.ucx_initialized is False

    finally:
        cb.destroy()
        client.close()
Esempio n. 16
0
def test_allreduce(client):

    try:
        cb = CommsContext()
        cb.init()

        dfs = [
            client.submit(func_test_allreduce,
                          cb.sessionId,
                          random.random(),
                          workers=[w]) for w in cb.worker_addresses
        ]
        wait(dfs, timeout=5)

        assert all([x.result() for x in dfs])

    finally:
        cb.destroy()
Esempio n. 17
0
    def _fit(self, model_func, data, **kwargs):

        n_cols = data[0].shape[1]

        data = DistributedDataHandler.create(data=data, client=self.client)
        self.datatype = data.datatype

        comms = CommsContext(comms_p2p=False, verbose=self.verbose)
        comms.init(workers=data.workers)

        data.calculate_parts_to_sizes(comms)
        self.ranks = data.ranks

        lin_models = dict([
            (data.worker_info[wf[0]]["rank"],
             self.client.submit(model_func,
                                comms.sessionId,
                                self.datatype,
                                **self.kwargs,
                                pure=False,
                                workers=[wf[0]]))
            for idx, wf in enumerate(data.worker_to_parts.items())
        ])

        lin_fit = dict([
            (wf[0],
             self.client.submit(
                 _func_fit,
                 lin_models[data.worker_info[wf[0]]["rank"]],
                 wf[1],
                 data.total_rows,
                 n_cols,
                 data.parts_to_sizes[data.worker_info[wf[0]]["rank"]],
                 data.worker_info[wf[0]]["rank"],
                 pure=False,
                 workers=[wf[0]]))
            for idx, wf in enumerate(data.worker_to_parts.items())
        ])

        wait(list(lin_fit.values()))
        raise_exception_from_futures(list(lin_fit.values()))

        comms.destroy()
        return lin_models
Esempio n. 18
0
    def fit(self, X):
        """
        Fit a multi-node multi-GPU KMeans model

        Parameters
        ----------
        X : dask_cudf.Dataframe

        Returns
        -------
        self: KMeans model
        """
        gpu_futures = self.client.sync(extract_ddf_partitions, X)

        worker_to_parts = workers_to_parts(gpu_futures)

        workers = list(map(lambda x: x[0], worker_to_parts.items()))

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=workers)

        key = uuid1()
        kmeans_fit = [
            self.client.submit(KMeans._func_fit,
                               comms.sessionId,
                               wf[1],
                               **self.kwargs,
                               workers=[wf[0]],
                               key="%s-%s" % (key, idx))
            for idx, wf in enumerate(worker_to_parts.items())
        ]

        wait(kmeans_fit)
        self.raise_exception_from_futures(kmeans_fit)

        comms.destroy()

        self.local_model = kmeans_fit[0].result()
        self.cluster_centers_ = self.local_model.cluster_centers_

        return self
Esempio n. 19
0
def test_allreduce(cluster):

    client = Client(cluster)

    try:
        cb = CommsContext()
        cb.init()

        dfs = [
            client.submit(func_test_allreduce,
                          cb.sessionId,
                          random.random(),
                          workers=[w]) for w in cb.worker_addresses
        ]
        wait(dfs)

        assert all([x.result() for x in dfs])

    finally:
        cb.destroy()
        client.close()
Esempio n. 20
0
def test_send_recv(n_trials, ucx_client):

    try:

        cb = CommsContext(comms_p2p=True)
        cb.init()

        dfs = [
            ucx_client.submit(func_test_send_recv,
                              cb.sessionId,
                              n_trials,
                              random.random(),
                              workers=[w]) for w in cb.worker_addresses
        ]

        wait(dfs, timeout=5)

        assert (list(map(lambda x: x.result(), dfs)))

    finally:
        cb.destroy()
Esempio n. 21
0
    def fit(self, X):
        """
        Fits a distributed KMeans model
        :param X: dask_cudf.Dataframe to fit
        :return: This KMeans instance
        """
        gpu_futures = self.client.sync(extract_ddf_partitions, X)

        workers = list(map(lambda x: x[0], gpu_futures.items()))

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=workers)

        kmeans_fit = [
            self.client.submit(KMeans.func_fit,
                               comms.sessionId,
                               self.n_clusters,
                               self.max_iter,
                               self.tol,
                               self.verbose,
                               self.random_state,
                               self.precompute_distances,
                               self.init,
                               self.n_init,
                               self.algorithm,
                               f,
                               random.random(),
                               workers=[w]) for w, f in gpu_futures.items()
        ]

        wait(kmeans_fit)

        comms.destroy()

        self.local_model = kmeans_fit[0].result()
        self.cluster_centers_ = self.local_model.cluster_centers_

        return self
Esempio n. 22
0
def test_send_recv(n_trials, ucx_cluster):

    client = Client(ucx_cluster)

    try:

        cb = CommsContext(comms_p2p=True, verbose=True)
        cb.init()

        dfs = [
            client.submit(func_test_send_recv,
                          cb.sessionId,
                          n_trials,
                          random.random(),
                          workers=[w]) for w in cb.worker_addresses
        ]

        wait(dfs)

        assert (list(map(lambda x: x.result(), dfs)))

    finally:
        cb.destroy()
        client.close()
Esempio n. 23
0
    def fit(self, X, _transform=False):
        """
        Fit the model with X.

        Parameters
        ----------
        X : dask cuDF input

        """
        gpu_futures = self.client.sync(extract_ddf_partitions, X)

        self.rnks = dict()
        rnk_counter = 0
        worker_to_parts = OrderedDict()
        for w, p in gpu_futures:
            if w not in worker_to_parts:
                worker_to_parts[w] = []
            if w not in self.rnks.keys():
                self.rnks[w] = rnk_counter
                rnk_counter = rnk_counter + 1
            worker_to_parts[w].append(p)

        workers = list(map(lambda x: x[0], gpu_futures))

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=workers)

        worker_info = comms.worker_info(comms.worker_addresses)

        key = uuid1()
        partsToRanks = [(worker_info[wf[0]]["r"],
                         self.client.submit(TruncatedSVD._func_get_size,
                                            wf[1],
                                            workers=[wf[0]],
                                            key="%s-%s" % (key, idx)).result())
                        for idx, wf in enumerate(gpu_futures)]

        N = X.shape[1]
        M = reduce(lambda a, b: a + b, map(lambda x: x[1], partsToRanks))

        key = uuid1()
        self.tsvd_models = [
            (wf[0],
             self.client.submit(TruncatedSVD._func_create_model,
                                comms.sessionId,
                                wf[1],
                                **self.kwargs,
                                workers=[wf[0]],
                                key="%s-%s" % (key, idx)))
            for idx, wf in enumerate(worker_to_parts.items())
        ]

        key = uuid1()
        tsvd_fit = dict([(worker_info[wf[0]]["r"],
                          self.client.submit(TruncatedSVD._func_fit,
                                             wf[1],
                                             M,
                                             N,
                                             partsToRanks,
                                             worker_info[wf[0]]["r"],
                                             _transform,
                                             key="%s-%s" % (key, idx),
                                             workers=[wf[0]]))
                         for idx, wf in enumerate(self.tsvd_models)])

        wait(list(tsvd_fit.values()))
        raise_exception_from_futures(list(tsvd_fit.values()))

        comms.destroy()

        self.local_model = self.client.submit(TruncatedSVD._func_get_first,
                                              self.tsvd_models[0][1]).result()

        self.components_ = self.local_model.components_
        self.explained_variance_ = self.local_model.explained_variance_
        self.explained_variance_ratio_ = \
            self.local_model.explained_variance_ratio_
        self.singular_values_ = self.local_model.singular_values_

        out_futures = []
        if _transform:
            completed_part_map = {}
            for rank, size in partsToRanks:
                if rank not in completed_part_map:
                    completed_part_map[rank] = 0

                f = tsvd_fit[rank]
                out_futures.append(
                    self.client.submit(TruncatedSVD._func_get_idx, f,
                                       completed_part_map[rank]))

                completed_part_map[rank] += 1

            return to_dask_cudf(out_futures)
Esempio n. 24
0
File: base.py Progetto: isVoid/cuml
    def _fit(self, X, _transform=False):
        """
        Fit the model with X.

        Parameters
        ----------
        X : dask cuDF input

        """

        n_cols = X.shape[1]

        data = DistributedDataHandler.create(data=X, client=self.client)
        self.datatype = data.datatype

        if "svd_solver" in self.kwargs \
                and self.kwargs["svd_solver"] == "tsqr":
            comms = CommsContext(comms_p2p=True)
        else:
            comms = CommsContext(comms_p2p=False)

        comms.init(workers=data.workers)

        data.calculate_parts_to_sizes(comms)

        worker_info = comms.worker_info(comms.worker_addresses)
        parts_to_sizes, _ = parts_to_ranks(self.client, worker_info,
                                           data.gpu_futures)

        total_rows = data.total_rows

        models = dict([(data.worker_info[wf[0]]["rank"],
                        self.client.submit(self._create_model,
                                           comms.sessionId,
                                           self._model_func,
                                           self.datatype,
                                           **self.kwargs,
                                           pure=False,
                                           workers=[wf[0]]))
                       for idx, wf in enumerate(data.worker_to_parts.items())])

        pca_fit = dict([
            (wf[0],
             self.client.submit(DecompositionSyncFitMixin._func_fit,
                                models[data.worker_info[wf[0]]["rank"]],
                                wf[1],
                                total_rows,
                                n_cols,
                                parts_to_sizes,
                                data.worker_info[wf[0]]["rank"],
                                _transform,
                                pure=False,
                                workers=[wf[0]]))
            for idx, wf in enumerate(data.worker_to_parts.items())
        ])

        wait(list(pca_fit.values()))
        raise_exception_from_futures(list(pca_fit.values()))

        comms.destroy()

        self._set_internal_model(list(models.values())[0])

        if _transform:
            out_futures = flatten_grouped_results(self.client,
                                                  data.gpu_futures, pca_fit)
            return to_output(out_futures, self.datatype)

        return self
Esempio n. 25
0
    def _fit(self, X, _transform=False):
        """
        Fit the model with X.

        Parameters
        ----------
        X : dask cuDF input

        """

        n_cols = X.shape[1]

        data = DistributedDataHandler.create(data=X, client=self.client)
        self.datatype = data.datatype

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=data.workers)

        data.calculate_parts_to_sizes(comms)

        total_rows = data.total_rows

        models = dict([(data.worker_info[wf[0]]["rank"],
                        self.client.submit(self._create_model,
                                           comms.sessionId,
                                           self._model_func,
                                           self.datatype,
                                           **self.kwargs,
                                           pure=False,
                                           workers=[wf[0]]))
                       for idx, wf in enumerate(data.worker_to_parts.items())])

        pca_fit = dict([
            (wf[0],
             self.client.submit(
                 DecompositionSyncFitMixin._func_fit,
                 models[data.worker_info[wf[0]]["rank"]],
                 wf[1],
                 total_rows,
                 n_cols,
                 data.parts_to_sizes[data.worker_info[wf[0]]["rank"]],
                 data.worker_info[wf[0]]["rank"],
                 _transform,
                 pure=False,
                 workers=[wf[0]]))
            for idx, wf in enumerate(data.worker_to_parts.items())
        ])

        wait(list(pca_fit.values()))
        raise_exception_from_futures(list(pca_fit.values()))

        comms.destroy()

        self.local_model = list(models.values())[0].result()

        self.components_ = self.local_model.components_
        self.explained_variance_ = self.local_model.explained_variance_
        self.explained_variance_ratio_ = \
            self.local_model.explained_variance_ratio_
        self.singular_values_ = self.local_model.singular_values_

        if _transform:
            out_futures = flatten_grouped_results(self.client,
                                                  data.gpu_futures, pca_fit)
            return to_output(out_futures, self.datatype)

        return self

        return self
Esempio n. 26
0
    def _fit(self, X, y):
        X_futures = self.client.sync(extract_ddf_partitions, X)
        y_futures = self.client.sync(extract_ddf_partitions, y)

        X_partition_workers = [w for w, xc in X_futures]
        y_partition_workers = [w for w, xc in y_futures]

        if set(X_partition_workers) != set(y_partition_workers):
            raise ValueError("""
              X  and y are not partitioned on the same workers expected \n_cols
              Linear Regression""")

        self.rnks = dict()
        rnk_counter = 0
        worker_to_parts = OrderedDict()
        for w, p in X_futures:
            if w not in worker_to_parts:
                worker_to_parts[w] = []
            if w not in self.rnks.keys():
                self.rnks[w] = rnk_counter
                rnk_counter = rnk_counter + 1
            worker_to_parts[w].append(p)

        worker_to_parts_y = OrderedDict()
        for w, p in y_futures:
            if w not in worker_to_parts_y:
                worker_to_parts_y[w] = []
            worker_to_parts_y[w].append(p)

        workers = list(map(lambda x: x[0], X_futures))

        comms = CommsContext(comms_p2p=False)
        comms.init(workers=workers)

        worker_info = comms.worker_info(comms.worker_addresses)

        key = uuid1()
        partsToSizes = [(worker_info[wf[0]]["r"], self.client.submit(
            Ridge._func_get_size,
            wf[1],
            workers=[wf[0]],
            key="%s-%s" % (key, idx)).result())
            for idx, wf in enumerate(X_futures)]

        n_cols = X.shape[1]
        n_rows = reduce(lambda a, b: a+b, map(lambda x: x[1], partsToSizes))

        key = uuid1()
        self.linear_models = [(wf[0], self.client.submit(
            Ridge._func_create_model,
            comms.sessionId,
            **self.kwargs,
            workers=[wf[0]],
            key="%s-%s" % (key, idx)))
            for idx, wf in enumerate(worker_to_parts.items())]

        key = uuid1()
        linear_fit = dict([(worker_info[wf[0]]["r"], self.client.submit(
            Ridge._func_fit,
            wf[1],
            worker_to_parts[wf[0]],
            worker_to_parts_y[wf[0]],
            n_rows, n_cols,
            partsToSizes,
            worker_info[wf[0]]["r"],
            key="%s-%s" % (key, idx),
            workers=[wf[0]]))
            for idx, wf in enumerate(self.linear_models)])

        wait(list(linear_fit.values()))
        raise_exception_from_futures(list(linear_fit.values()))

        comms.destroy()

        self.local_model = self.linear_models[0][1].result()
        self.coef_ = self.local_model.coef_
        self.intercept_ = self.local_model.intercept_