Esempio n. 1
0
def test__repr__():
    assert cuStandardScaler().__repr__() == 'StandardScaler()'
    assert cuMinMaxScaler().__repr__() == 'MinMaxScaler()'
    assert cuMaxAbsScaler().__repr__() == 'MaxAbsScaler()'
    assert cuNormalizer().__repr__() == 'Normalizer()'
    assert cuBinarizer().__repr__() == 'Binarizer()'
    assert cuPolynomialFeatures().__repr__() == 'PolynomialFeatures()'
    assert cuSimpleImputer().__repr__() == 'SimpleImputer()'
    assert cuRobustScaler().__repr__() == 'RobustScaler()'
    assert cuKBinsDiscretizer().__repr__() == 'KBinsDiscretizer()'
Esempio n. 2
0
def test_standard_scaler_sparse(sparse_clf_dataset, with_std):  # noqa: F811
    X_np, X = sparse_clf_dataset

    scaler = cuStandardScaler(copy=True, with_mean=False, with_std=with_std)
    t_X = scaler.fit_transform(X)
    r_X = scaler.inverse_transform(t_X)
    assert type(t_X) == type(X)
    assert type(r_X) == type(t_X)

    scaler = skStandardScaler(copy=True, with_mean=False, with_std=with_std)
    sk_t_X = scaler.fit_transform(X_np)
    sk_r_X = scaler.inverse_transform(sk_t_X)

    assert_allclose(t_X, sk_t_X)
    assert_allclose(r_X, sk_r_X)