Esempio n. 1
0
def get_rnn_lin_layer_bias_params(
        handle, rnn_desc, layer, x_desc, w_desc, w, lin_layer_id):
    bias_desc = Descriptor(cudnn.createFilterDescriptor(),
                           cudnn.destroyFilterDescriptor)
    ptr = numpy.array(0, dtype=numpy.intp)
    cudnn.getRNNLinLayerBiasParams(
        handle, rnn_desc.value, layer, x_desc.value, w_desc.value, w.data.ptr,
        lin_layer_id, bias_desc.value, ptr.ctypes.data)
    offset = (ptr - w.data.ptr) // 4
    _, _, _, dim = cudnn.getFilterNdDescriptor(bias_desc.value, 3)
    size = internal.prod(dim)
    bias = w[offset: offset + size]
    return bias
Esempio n. 2
0
def _potrf_batched(a):
    """Batched Cholesky decomposition.

    Decompose a given array of two-dimensional square matrices into
    ``L * L.T``, where ``L`` is a lower-triangular matrix and ``.T``
    is a conjugate transpose operator.

    Args:
        a (cupy.ndarray): The input array of matrices
            with dimension ``(..., N, N)``

    Returns:
        cupy.ndarray: The lower-triangular matrix.
    """
    if not check_availability('potrfBatched'):
        raise RuntimeError('potrfBatched is not available')

    if a.dtype.char == 'f' or a.dtype.char == 'd':
        dtype = a.dtype.char
    else:
        dtype = numpy.promote_types(a.dtype.char, 'f').char

    if dtype == 'f':
        potrfBatched = cusolver.spotrfBatched
    elif dtype == 'd':
        potrfBatched = cusolver.dpotrfBatched
    elif dtype == 'F':
        potrfBatched = cusolver.cpotrfBatched
    else:  # dtype == 'D':
        potrfBatched = cusolver.zpotrfBatched

    x = a.astype(dtype, order='C', copy=True)
    xp = cupy.core._mat_ptrs(x)
    n = x.shape[-1]
    ldx = x.strides[-2] // x.dtype.itemsize
    handle = device.get_cusolver_handle()
    batch_size = internal.prod(x.shape[:-2])
    dev_info = cupy.empty(batch_size, dtype=numpy.int32)

    potrfBatched(
        handle, cublas.CUBLAS_FILL_MODE_UPPER, n, xp.data.ptr, ldx,
        dev_info.data.ptr, batch_size)
    cupy.linalg._util._check_cusolver_dev_info_if_synchronization_allowed(
        potrfBatched, dev_info)

    return cupy.tril(x)
Esempio n. 3
0
def tensorsolve(a, b, axes=None):
    """Solves tensor equations denoted by ``ax = b``.

    Suppose that ``b`` is equivalent to ``cupy.tensordot(a, x)``.
    This function computes tensor ``x`` from ``a`` and ``b``.

    Args:
        a (cupy.ndarray): The tensor with ``len(shape) >= 1``
        b (cupy.ndarray): The tensor with ``len(shape) >= 1``
        axes (tuple of ints): Axes in ``a`` to reorder to the right
            before inversion.

    Returns:
        cupy.ndarray:
            The tensor with shape ``Q`` such that ``b.shape + Q == a.shape``.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.tensorsolve`
    """
    if axes is not None:
        allaxes = list(range(a.ndim))
        for k in axes:
            allaxes.remove(k)
            allaxes.insert(a.ndim, k)
        a = a.transpose(allaxes)

    oldshape = a.shape[-(a.ndim - b.ndim):]
    prod = internal.prod(oldshape)

    a = a.reshape(-1, prod)
    b = b.ravel()
    result = solve(a, b)
    return result.reshape(oldshape)
Esempio n. 4
0
def tensorinv(a, ind=2):
    """Computes the inverse of a tensor.

    This function computes tensor ``a_inv`` from tensor ``a`` such that
    ``tensordot(a_inv, a, ind) == I``, where ``I`` denotes the identity tensor.

    Args:
        a (cupy.ndarray):
            The tensor such that
            ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
        ind (int):
            The positive number used in ``axes`` option of ``tensordot``.

    Returns:
        cupy.ndarray:
            The inverse of a tensor whose shape is equivalent to
            ``a.shape[ind:] + a.shape[:ind]``.

    .. warning::
        This function calls one or more cuSOLVER routine(s) which may yield
        invalid results if input conditions are not met.
        To detect these invalid results, you can set the `linalg`
        configuration to a value that is not `ignore` in
        :func:`cupyx.errstate` or :func:`cupyx.seterr`.

    .. seealso:: :func:`numpy.linalg.tensorinv`
    """
    _util._assert_cupy_array(a)

    if ind <= 0:
        raise ValueError('Invalid ind argument')
    oldshape = a.shape
    invshape = oldshape[ind:] + oldshape[:ind]
    prod = internal.prod(oldshape[ind:])
    a = a.reshape(prod, -1)
    a_inv = inv(a)
    return a_inv.reshape(*invshape)
Esempio n. 5
0
 def test_empty(self):
     self.assertEqual(internal.prod([]), 1)
Esempio n. 6
0
 def test_two(self):
     self.assertEqual(internal.prod([2, 3]), 6)
Esempio n. 7
0
 def test_one(self):
     self.assertEqual(internal.prod([2]), 2)
Esempio n. 8
0
    def check_usv(self, shape, dtype):
        array = testing.shaped_random(
            shape, numpy, dtype=dtype, seed=self.seed)
        a_cpu = numpy.asarray(array, dtype=dtype)
        a_gpu = cupy.asarray(array, dtype=dtype)
        result_cpu = numpy.linalg.svd(a_cpu, full_matrices=self.full_matrices)
        result_gpu = cupy.linalg.svd(a_gpu, full_matrices=self.full_matrices)
        # Check if the input matrix is not broken
        cupy.testing.assert_allclose(a_gpu, a_cpu)

        assert len(result_gpu) == 3
        for i in range(3):
            assert result_gpu[i].shape == result_cpu[i].shape
            assert result_gpu[i].dtype == result_cpu[i].dtype
        u_cpu, s_cpu, vh_cpu = result_cpu
        u_gpu, s_gpu, vh_gpu = result_gpu
        cupy.testing.assert_allclose(s_gpu, s_cpu, rtol=1e-5, atol=1e-4)

        # reconstruct the matrix
        k = s_cpu.shape[-1]
        if len(shape) == 2:
            if self.full_matrices:
                a_gpu_usv = cupy.dot(u_gpu[:, :k] * s_gpu, vh_gpu[:k, :])
            else:
                a_gpu_usv = cupy.dot(u_gpu * s_gpu, vh_gpu)
        else:
            if self.full_matrices:
                a_gpu_usv = cupy.matmul(u_gpu[..., :k] * s_gpu[..., None, :],
                                        vh_gpu[..., :k, :])
            else:
                a_gpu_usv = cupy.matmul(u_gpu*s_gpu[..., None, :], vh_gpu)
        cupy.testing.assert_allclose(a_gpu, a_gpu_usv, rtol=1e-4, atol=1e-4)

        # assert unitary
        if len(shape) == 2:
            cupy.testing.assert_allclose(
                cupy.matmul(u_gpu.T.conj(), u_gpu),
                numpy.eye(u_gpu.shape[1]),
                atol=1e-4)
            cupy.testing.assert_allclose(
                cupy.matmul(vh_gpu, vh_gpu.T.conj()),
                numpy.eye(vh_gpu.shape[0]),
                atol=1e-4)
        else:
            batch = prod(shape[:-2])
            u_len = u_gpu.shape[-1]
            vh_len = vh_gpu.shape[-2]

            if batch == 0:
                id_u_cpu = numpy.empty(shape[:-2] + (u_len, u_len))
                id_vh_cpu = numpy.empty(shape[:-2] + (vh_len, vh_len))
            else:
                id_u_cpu = [numpy.eye(u_len) for _ in range(batch)]
                id_u_cpu = numpy.stack(id_u_cpu, axis=0).reshape(
                    *(shape[:-2]), u_len, u_len)
                id_vh_cpu = [numpy.eye(vh_len) for _ in range(batch)]
                id_vh_cpu = numpy.stack(id_vh_cpu, axis=0).reshape(
                    *(shape[:-2]), vh_len, vh_len)

            cupy.testing.assert_allclose(
                cupy.matmul(u_gpu.swapaxes(-1, -2).conj(), u_gpu),
                id_u_cpu, atol=1e-4)
            cupy.testing.assert_allclose(
                cupy.matmul(vh_gpu, vh_gpu.swapaxes(-1, -2).conj()),
                id_vh_cpu, atol=1e-4)