Esempio n. 1
0
def test_extrema02():
    labels = cp.asarray([1, 2])
    for type in types:
        input = cp.asarray([[1, 2], [3, 4]], type)
        # TODO: grlee77: avoid use of item()?
        output1 = ndimage.extrema(input, labels=labels, index=2)
        output2 = ndimage.minimum(input, labels=labels, index=2)
        output3 = ndimage.maximum(input, labels=labels, index=2)
        output4 = ndimage.minimum_position(input, labels=labels, index=2)
        output5 = ndimage.maximum_position(input, labels=labels, index=2)
        assert_equal(output1, (output2, output3, output4, output5))
Esempio n. 2
0
def test_extrema04():
    labels = cp.asarray([1, 2, 0, 4])
    for type in types:
        input = cp.asarray([[5, 4, 2, 5], [3, 7, 8, 2], [1, 5, 1, 1]], type)
        output1 = ndimage.extrema(input, labels, [1, 2])
        output2 = ndimage.minimum(input, labels, [1, 2])
        output3 = ndimage.maximum(input, labels, [1, 2])
        output4 = ndimage.minimum_position(input, labels, [1, 2])
        output5 = ndimage.maximum_position(input, labels, [1, 2])
        assert_array_almost_equal(output1[0], output2)
        assert_array_almost_equal(output1[1], output3)
        assert_array_almost_equal(output1[2], output4)
        assert_array_almost_equal(output1[3], output5)
Esempio n. 3
0
def test_extrema03():
    labels = cp.asarray([[1, 2], [2, 3]])
    for type in types:
        input = cp.asarray([[1, 2], [3, 4]], type)
        output1 = ndimage.extrema(input, labels=labels, index=[2, 3, 8])
        output2 = ndimage.minimum(input, labels=labels, index=[2, 3, 8])
        output3 = ndimage.maximum(input, labels=labels, index=[2, 3, 8])
        output4 = ndimage.minimum_position(input,
                                           labels=labels,
                                           index=[2, 3, 8])
        output5 = ndimage.maximum_position(input,
                                           labels=labels,
                                           index=[2, 3, 8])
        assert_array_almost_equal(output1[0], output2)
        assert_array_almost_equal(output1[1], output3)
        assert_array_almost_equal(output1[2], output4)
        assert_array_almost_equal(output1[3], output5)
Esempio n. 4
0
def test_stat_funcs_2d():
    a = cp.asarray([[5, 6, 0, 0, 0], [8, 9, 0, 0, 0], [0, 0, 0, 3, 5]])
    lbl = cp.asarray([[1, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 0, 2, 2]])

    index = cp.asarray([1, 2])
    mean = ndimage.mean(a, labels=lbl, index=index)
    assert_array_equal(mean, [7.0, 4.0])

    var = ndimage.variance(a, labels=lbl, index=index)
    assert_array_equal(var, [2.5, 1.0])

    std = ndimage.standard_deviation(a, labels=lbl, index=index)
    assert_array_almost_equal(std, cp.sqrt(cp.asarray([2.5, 1.0])))

    med = ndimage.median(a, labels=lbl, index=index)
    assert_array_equal(med, [7.0, 4.0])

    min = ndimage.minimum(a, labels=lbl, index=index)
    assert_array_equal(min, [5, 3])

    max = ndimage.maximum(a, labels=lbl, index=index)
    assert_array_equal(max, [9, 5])
Esempio n. 5
0
def test_maximum05():
    # Regression test for ticket #501 (Trac)
    x = cp.asarray([-3, -2, -1])
    assert_array_equal(ndimage.maximum(x), -1)
Esempio n. 6
0
def test_maximum04():
    labels = cp.asarray([[1, 2], [2, 3]])
    for type in types:
        input = cp.asarray([[1, 2], [3, 4]], type)
        output = ndimage.maximum(input, labels=labels, index=[2, 3, 8])
        assert_array_almost_equal(output, [3.0, 4.0, 0.0])
Esempio n. 7
0
def test_maximum03():
    labels = cp.asarray([1, 2])
    for type in types:
        input = cp.asarray([[1, 2], [3, 4]], type)
        output = ndimage.maximum(input, labels=labels, index=2)
        assert_almost_equal(output, 4.0)
Esempio n. 8
0
def test_maximum02():
    labels = cp.asarray([1, 0], bool)
    input = cp.asarray([[2, 2], [2, 4]], bool)
    output = ndimage.maximum(input, labels=labels)
    assert_almost_equal(output, 1.0)
Esempio n. 9
0
def test_maximum01():
    labels = cp.asarray([1, 0], bool)
    for type in types:
        input = cp.asarray([[1, 2], [3, 4]], type)
        output = ndimage.maximum(input, labels=labels)
        assert_almost_equal(output, 3.0)