Esempio n. 1
0
def affine_transform(input, matrix, offset=0.0, output_shape=None, output=None,
                     order=None, mode='constant', cval=0.0, prefilter=True):
    """Apply an affine transformation.

    Given an output image pixel index vector ``o``, the pixel value is
    determined from the input image at position
    ``cupy.dot(matrix, o) + offset``.

    Args:
        input (cupy.ndarray): The input array.
        matrix (cupy.ndarray): The inverse coordinate transformation matrix,
            mapping output coordinates to input coordinates. If ``ndim`` is the
            number of dimensions of ``input``, the given matrix must have one
            of the following shapes:

                - ``(ndim, ndim)``: the linear transformation matrix for each
                  output coordinate.
                - ``(ndim,)``: assume that the 2D transformation matrix is
                  diagonal, with the diagonal specified by the given value.
                - ``(ndim + 1, ndim + 1)``: assume that the transformation is
                  specified using homogeneous coordinates. In this case, any
                  value passed to ``offset`` is ignored.
                - ``(ndim, ndim + 1)``: as above, but the bottom row of a
                  homogeneous transformation matrix is always
                  ``[0, 0, ..., 1]``, and may be omitted.

        offset (float or sequence): The offset into the array where the
            transform is applied. If a float, ``offset`` is the same for each
            axis. If a sequence, ``offset`` should contain one value for each
            axis.
        output_shape (tuple of ints): Shape tuple.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation. If it is not given,
            order 1 is used. It is different from :mod:`scipy.ndimage` and can
            change in the future. Currently it supports only order 0 and 1.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray or None:
            The transformed input. If ``output`` is given as a parameter,
            ``None`` is returned.

    .. seealso:: :func:`scipy.ndimage.affine_transform`
    """

    _check_parameter('affine_transform', order, mode)

    offset = _util._fix_sequence_arg(offset, input.ndim, 'offset', float)

    if matrix.ndim not in [1, 2] or matrix.shape[0] < 1:
        raise RuntimeError('no proper affine matrix provided')
    if matrix.ndim == 2:
        if matrix.shape[0] == matrix.shape[1] - 1:
            offset = matrix[:, -1]
            matrix = matrix[:, :-1]
        elif matrix.shape[0] == input.ndim + 1:
            offset = matrix[:-1, -1]
            matrix = matrix[:-1, :-1]
        if matrix.shape != (input.ndim, input.ndim):
            raise RuntimeError("improper affine shape")

    if mode == 'opencv':
        m = cupy.zeros((input.ndim + 1, input.ndim + 1))
        m[:-1, :-1] = matrix
        m[:-1, -1] = offset
        m[-1, -1] = 1
        m = cupy.linalg.inv(m)
        m[:2] = cupy.roll(m[:2], 1, axis=0)
        m[:2, :2] = cupy.roll(m[:2, :2], 1, axis=1)
        matrix = m[:-1, :-1]
        offset = m[:-1, -1]

    if output_shape is None:
        output_shape = input.shape

    if mode == 'opencv' or mode == '_opencv_edge':
        if matrix.ndim == 1:
            matrix = cupy.diag(matrix)
        coordinates = cupy.indices(output_shape, dtype=cupy.float64)
        coordinates = cupy.dot(matrix, coordinates.reshape((input.ndim, -1)))
        coordinates += cupy.expand_dims(cupy.asarray(offset), -1)
        ret = _util._get_output(output, input, shape=output_shape)
        ret[:] = map_coordinates(input, coordinates, ret.dtype, order, mode,
                                 cval, prefilter).reshape(output_shape)
        return ret

    matrix = matrix.astype(cupy.float64, copy=False)
    if order is None:
        order = 1
    ndim = input.ndim
    output = _util._get_output(output, input, shape=output_shape)
    if input.dtype.kind in 'iu':
        input = input.astype(cupy.float32)

    integer_output = output.dtype.kind in 'iu'
    _util._check_cval(mode, cval, integer_output)
    large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
    if matrix.ndim == 1:
        offset = cupy.asarray(offset, dtype=cupy.float64)
        offset = -offset / matrix
        kern = _interp_kernels._get_zoom_shift_kernel(
            ndim, large_int, output_shape, mode, cval=cval, order=order,
            integer_output=integer_output)
        kern(input, offset, matrix, output)
    else:
        kern = _interp_kernels._get_affine_kernel(
            ndim, large_int, output_shape, mode, cval=cval, order=order,
            integer_output=integer_output)
        m = cupy.zeros((ndim, ndim + 1), dtype=cupy.float64)
        m[:, :-1] = matrix
        m[:, -1] = cupy.asarray(offset, dtype=cupy.float64)
        kern(input, m, output)
    return output
Esempio n. 2
0
def zoom(input, zoom, output=None, order=None, mode='constant', cval=0.0,
         prefilter=True):
    """Zoom an array.

    The array is zoomed using spline interpolation of the requested order.

    Args:
        input (cupy.ndarray): The input array.
        zoom (float or sequence): The zoom factor along the axes. If a float,
            ``zoom`` is the same for each axis. If a sequence, ``zoom`` should
            contain one value for each axis.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation. If it is not given,
            order 1 is used. It is different from :mod:`scipy.ndimage` and can
            change in the future. Currently it supports only order 0 and 1.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray or None:
            The zoomed input.

    .. seealso:: :func:`scipy.ndimage.zoom`
    """

    _check_parameter('zoom', order, mode)

    zoom = _util._fix_sequence_arg(zoom, input.ndim, 'zoom', float)

    output_shape = []
    for s, z in zip(input.shape, zoom):
        output_shape.append(int(round(s * z)))
    output_shape = tuple(output_shape)

    if mode == 'opencv':
        zoom = []
        offset = []
        for in_size, out_size in zip(input.shape, output_shape):
            if out_size > 1:
                zoom.append(float(in_size) / out_size)
                offset.append((zoom[-1] - 1) / 2.0)
            else:
                zoom.append(0)
                offset.append(0)
        mode = 'nearest'

        output = affine_transform(
            input,
            cupy.asarray(zoom),
            offset,
            output_shape,
            output,
            order,
            mode,
            cval,
            prefilter,
        )
    else:
        if order is None:
            order = 1

        zoom = []
        for in_size, out_size in zip(input.shape, output_shape):
            if out_size > 1:
                zoom.append(float(in_size - 1) / (out_size - 1))
            else:
                zoom.append(0)

        output = _util._get_output(output, input, shape=output_shape)
        if input.dtype.kind in 'iu':
            input = input.astype(cupy.float32)
        integer_output = output.dtype.kind in 'iu'
        _util._check_cval(mode, cval, integer_output)
        large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
        kern = _interp_kernels._get_zoom_kernel(
            input.ndim, large_int, output_shape, mode, order=order,
            integer_output=integer_output)
        zoom = cupy.asarray(zoom, dtype=cupy.float64)
        kern(input, zoom, output)
    return output
Esempio n. 3
0
def shift(input, shift, output=None, order=None, mode='constant', cval=0.0,
          prefilter=True):
    """Shift an array.

    The array is shifted using spline interpolation of the requested order.
    Points outside the boundaries of the input are filled according to the
    given mode.

    Args:
        input (cupy.ndarray): The input array.
        shift (float or sequence): The shift along the axes. If a float,
            ``shift`` is the same for each axis. If a sequence, ``shift``
            should contain one value for each axis.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation. If it is not given,
            order 1 is used. It is different from :mod:`scipy.ndimage` and can
            change in the future. Currently it supports only order 0 and 1.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray or None:
            The shifted input.

    .. seealso:: :func:`scipy.ndimage.shift`
    """

    _check_parameter('shift', order, mode)

    shift = _util._fix_sequence_arg(shift, input.ndim, 'shift', float)

    if mode == 'opencv':
        mode = '_opencv_edge'

        output = affine_transform(
            input,
            cupy.ones(input.ndim, input.dtype),
            cupy.negative(cupy.asarray(shift)),
            None,
            output,
            order,
            mode,
            cval,
            prefilter,
        )
    else:
        if order is None:
            order = 1
        output = _util._get_output(output, input)
        if input.dtype.kind in 'iu':
            input = input.astype(cupy.float32)
        integer_output = output.dtype.kind in 'iu'
        _util._check_cval(mode, cval, integer_output)
        large_int = _prod(input.shape) > 1 << 31
        kern = _interp_kernels._get_shift_kernel(
            input.ndim, large_int, input.shape, mode, cval=cval, order=order,
            integer_output=integer_output)
        shift = cupy.asarray(shift, dtype=cupy.float64)
        kern(input, shift, output)
    return output
Esempio n. 4
0
def map_coordinates(input,
                    coordinates,
                    output=None,
                    order=None,
                    mode='constant',
                    cval=0.0,
                    prefilter=True):
    """Map the input array to new coordinates by interpolation.

    The array of coordinates is used to find, for each point in the output, the
    corresponding coordinates in the input. The value of the input at those
    coordinates is determined by spline interpolation of the requested order.

    The shape of the output is derived from that of the coordinate array by
    dropping the first axis. The values of the array along the first axis are
    the coordinates in the input array at which the output value is found.

    Args:
        input (cupy.ndarray): The input array.
        coordinates (array_like): The coordinates at which ``input`` is
            evaluated.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation. If it is not given,
            order 1 is used. It is different from :mod:`scipy.ndimage` and can
            change in the future. Currently it supports only order 0 and 1.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'`` or ``'opencv'``). Default is ``'constant'``.
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray:
            The result of transforming the input. The shape of the output is
            derived from that of ``coordinates`` by dropping the first axis.

    .. seealso:: :func:`scipy.ndimage.map_coordinates`
    """

    _check_parameter('map_coordinates', order, mode)

    if mode == 'opencv' or mode == '_opencv_edge':
        input = cupy.pad(input, [(1, 1)] * input.ndim,
                         'constant',
                         constant_values=cval)
        coordinates = cupy.add(coordinates, 1)
        mode = 'constant'

    ret = _util._get_output(output, input, coordinates.shape[1:])
    integer_output = ret.dtype.kind in 'iu'
    _util._check_cval(mode, cval, integer_output)

    if input.dtype.kind in 'iu':
        input = input.astype(cupy.float32)

    large_int = max(_prod(input.shape), coordinates.shape[0]) > 1 << 31
    kern = _interp_kernels._get_map_kernel(input.ndim,
                                           large_int,
                                           yshape=coordinates.shape,
                                           mode=mode,
                                           cval=cval,
                                           order=order,
                                           integer_output=integer_output)
    kern(input, coordinates, ret)
    return ret
Esempio n. 5
0
def zoom(input,
         zoom,
         output=None,
         order=3,
         mode='constant',
         cval=0.0,
         prefilter=True,
         *,
         grid_mode=False):
    """Zoom an array.

    The array is zoomed using spline interpolation of the requested order.

    Args:
        input (cupy.ndarray): The input array.
        zoom (float or sequence): The zoom factor along the axes. If a float,
            ``zoom`` is the same for each axis. If a sequence, ``zoom`` should
            contain one value for each axis.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation, default is 3. Must
            be in the range 0-5.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``,
            ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``).
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.
        grid_mode (bool, optional): If False, the distance from the pixel
            centers is zoomed. Otherwise, the distance including the full pixel
            extent is used. For example, a 1d signal of length 5 is considered
            to have length 4 when ``grid_mode`` is False, but length 5 when
            ``grid_mode`` is True. See the following visual illustration:

            .. code-block:: text

                    | pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 |
                         |<-------------------------------------->|
                                            vs.
                    |<----------------------------------------------->|

            The starting point of the arrow in the diagram above corresponds to
            coordinate location 0 in each mode.

    Returns:
        cupy.ndarray or None:
            The zoomed input.

    .. seealso:: :func:`scipy.ndimage.zoom`
    """

    _check_parameter('zoom', order, mode)

    zoom = _util._fix_sequence_arg(zoom, input.ndim, 'zoom', float)

    output_shape = []
    for s, z in zip(input.shape, zoom):
        output_shape.append(int(round(s * z)))
    output_shape = tuple(output_shape)

    if mode == 'opencv':
        zoom = []
        offset = []
        for in_size, out_size in zip(input.shape, output_shape):
            if out_size > 1:
                zoom.append(float(in_size) / out_size)
                offset.append((zoom[-1] - 1) / 2.0)
            else:
                zoom.append(0)
                offset.append(0)
        mode = 'nearest'

        output = affine_transform(
            input,
            cupy.asarray(zoom),
            offset,
            output_shape,
            output,
            order,
            mode,
            cval,
            prefilter,
        )
    else:
        if grid_mode:

            # warn about modes that may have surprising behavior
            suggest_mode = None
            if mode == 'constant':
                suggest_mode = 'grid-constant'
            elif mode == 'wrap':
                suggest_mode = 'grid-wrap'
            if suggest_mode is not None:
                warnings.warn(
                    f'It is recommended to use mode = {suggest_mode} instead '
                    f'of {mode} when grid_mode is True.')

        zoom = []
        for in_size, out_size in zip(input.shape, output_shape):
            if grid_mode and out_size > 0:
                zoom.append(in_size / out_size)
            elif out_size > 1:
                zoom.append((in_size - 1) / (out_size - 1))
            else:
                zoom.append(0)

        output = _util._get_output(output, input, shape=output_shape)
        if input.dtype.kind in 'iu':
            input = input.astype(cupy.float32)
        filtered, nprepad = _filter_input(input, prefilter, mode, cval, order)
        integer_output = output.dtype.kind in 'iu'
        _util._check_cval(mode, cval, integer_output)
        large_int = max(_prod(input.shape), _prod(output_shape)) > 1 << 31
        kern = _interp_kernels._get_zoom_kernel(input.ndim,
                                                large_int,
                                                output_shape,
                                                mode,
                                                order=order,
                                                integer_output=integer_output,
                                                grid_mode=grid_mode,
                                                nprepad=nprepad)
        zoom = cupy.asarray(zoom, dtype=cupy.float64)
        kern(filtered, zoom, output)
    return output
Esempio n. 6
0
def shift(input,
          shift,
          output=None,
          order=3,
          mode='constant',
          cval=0.0,
          prefilter=True):
    """Shift an array.

    The array is shifted using spline interpolation of the requested order.
    Points outside the boundaries of the input are filled according to the
    given mode.

    Args:
        input (cupy.ndarray): The input array.
        shift (float or sequence): The shift along the axes. If a float,
            ``shift`` is the same for each axis. If a sequence, ``shift``
            should contain one value for each axis.
        output (cupy.ndarray or ~cupy.dtype): The array in which to place the
            output, or the dtype of the returned array.
        order (int): The order of the spline interpolation, default is 3. Must
            be in the range 0-5.
        mode (str): Points outside the boundaries of the input are filled
            according to the given mode (``'constant'``, ``'nearest'``,
            ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``,
            ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``).
        cval (scalar): Value used for points outside the boundaries of
            the input if ``mode='constant'`` or ``mode='opencv'``. Default is
            0.0
        prefilter (bool): It is not used yet. It just exists for compatibility
            with :mod:`scipy.ndimage`.

    Returns:
        cupy.ndarray or None:
            The shifted input.

    .. seealso:: :func:`scipy.ndimage.shift`
    """

    _check_parameter('shift', order, mode)

    shift = _util._fix_sequence_arg(shift, input.ndim, 'shift', float)

    if mode == 'opencv':
        mode = '_opencv_edge'

        output = affine_transform(
            input,
            cupy.ones(input.ndim, input.dtype),
            cupy.negative(cupy.asarray(shift)),
            None,
            output,
            order,
            mode,
            cval,
            prefilter,
        )
    else:
        output = _util._get_output(output, input)
        if input.dtype.kind in 'iu':
            input = input.astype(cupy.float32)
        filtered, nprepad = _filter_input(input, prefilter, mode, cval, order)
        integer_output = output.dtype.kind in 'iu'
        _util._check_cval(mode, cval, integer_output)
        large_int = _prod(input.shape) > 1 << 31
        kern = _interp_kernels._get_shift_kernel(input.ndim,
                                                 large_int,
                                                 input.shape,
                                                 mode,
                                                 cval=cval,
                                                 order=order,
                                                 integer_output=integer_output,
                                                 nprepad=nprepad)
        shift = cupy.asarray(shift, dtype=cupy.float64, order='C')
        if shift.ndim != 1:
            raise ValueError('shift must be 1d')
        if shift.size != filtered.ndim:
            raise ValueError('len(shift) must equal input.ndim')
        kern(filtered, shift, output)
    return output