Esempio n. 1
0
    def __init__(self,
                 surface_name,
                 generators,
                 automorph,
                 MCG_must_contain,
                 word_filter=basic_filter,
                 manifold_filter=basic_filter,
                 options=None):
        self.surface_name = surface_name
        self.generators = generators
        self.automorph = automorph
        self.MCG_must_contain = MCG_must_contain
        self.word_filter = word_filter
        self.manifold_filter = manifold_filter
        self.options = options if options is not None else Options()

        self.surfaces = SimpleNamespace(
            twister=snappy.twister.Surface(self.surface_name),
            flipper=flipper.load(self.surface_name),
            curver=curver.load(self.surface_name),
        )
        self.word_generator = WordGenerator(self.generators, self.automorph,
                                            self.MCG_must_contain,
                                            self.word_filter, self.surfaces,
                                            self.options)

        for path in [
                self.options.word_parts, self.options.properties_parts,
                self.options.word, self.options.properties, self.options.census
        ]:
            os.makedirs(os.path.dirname(path), exist_ok=True)
Esempio n. 2
0
 def test_closed_parallel_topological_type(self):
     S = curver.load(2, 1)
     a = S.triangulation([0, 2, 2, 2, 2, 0, 0, 0, 0])
     b = S.triangulation([0, 0, 0, 0, 0, 2, 2, 2, 2])
     self.assertEqual(a.topological_type(), b.topological_type())
     self.assertEqual(a.topological_type(closed=True), b.topological_type(closed=True))
     self.assertEqual((a+a).topological_type(), (b+b).topological_type())
     self.assertEqual((a+a).topological_type(closed=True), (b+b).topological_type(closed=True))
     self.assertNotEqual((a+a).topological_type(), (a+b).topological_type())
     self.assertEqual((a+a).topological_type(closed=True), (a+b).topological_type(closed=True))
Esempio n. 3
0
 def test_dihedral(self, genus):
     S = curver.load(genus, 2)
     
     g = S('a_0.b_0.' + '.'.join('c_{}.b_{}'.format(i, i+1) for i in range(genus-1)) + '.p_1').simplify()
     h = S('(a_0.b_0.' + '.'.join('c_{}.b_{}'.format(i, i+1) for i in range(genus-1)) + ')^{}.S_1'.format(2*genus+1)).simplify()
     
     K = curver.kernel.FiniteSubgroup.from_generators({'g': g, 'h': h})
     self.assertEqual(len(K), 4*(genus+1))
     
     signature = [(Fraction(-genus, 2*(genus+1)), 1, [(False, 2, ['h'], 2*(genus+1)), (False, 2*(genus+1), ['hg'], 2), (True, 2*(genus+1), ['g' * (2*genus + 1)], 2)])]
     self.assertEqual(K.quotient_orbifold_signature(), signature)
Esempio n. 4
0
    def test_pair(self, g, p):
        assume(2 - 2 * g - p < 0)
        T = curver.load(g, p).triangulation
        self.assertTrue(T.is_connected())

        surface = T.surface()
        self.assertEqual(len(surface), 1)

        S = list(surface.values())[0]
        self.assertEqual(S.g, g)
        self.assertEqual(S.p, p)
Esempio n. 5
0
def main(args):
    if args.sig is not None:
        T = curver.triangulation_from_sig(args.sig)
    else:
        T = curver.load(args.genus, max(args.punctures, 1)).triangulation
    
    P = Polyhedron.from_triangulation(T, args.upper, zeros=args.zeros)
    num_integral_points = P.integral_points_count(triangulation='cddlib')
    print(P)
    try:
        print('Polytope dimension: {}'.format(P.as_sage().dimension()))
    except AttributeError:
        print('Polytope dimension: Unknown')
    print('Drawing from [0, {})'.format(num_integral_points))
    
    common = dict(T=T, P=P, closed=args.punctures == 0)
    iterable = (dict(index=randrange(0, num_integral_points)) for _ in range(args.num))
    
    process(from_index, common, iterable, cores=args.cores, path=args.output)
Esempio n. 6
0
def index(request):
    error = None
    order = None
    classes = defaultdict(list)
    non_periodic = []
    if request.method == 'POST':
        form = MappingClassForm(request.POST)
        if form.is_valid():
            try:
                g = int(form.cleaned_data['genus'])
                p = int(form.cleaned_data['punctures'])
                words = form.cleaned_data['words']
                S = curver.load(g, p)
                for word in re.split('[;,]+', words):
                    h = S(word)
                    order = h.order()
                    if order == 0:
                        non_periodic.append(word)
                    else:
                        signature = h.subgroup().quotient_orbifold_signature(
                        )[0]
                        signature = Orbifold(
                            order, signature.euler_characteristic,
                            tuple(
                                sorted([
                                    cone(cp, order)
                                    for cp in signature.cone_points
                                ])))
                        classes[signature].append(word)
            except Exception as e:
                error = str(e)
    else:
        form = MappingClassForm()

    return render(
        request, 'quotient/index.html', {
            'form': form,
            'error': error,
            'classes': dict(classes),
            'non_periodic': non_periodic,
            'version': curver.__version__
        })
Esempio n. 7
0
def main(args):
    if args.genus == 0 and args.punctures == 6:
        common = dict(
            T=curver.load(0, 6).triangulation,
            P=Polyhedron(
                eqns=[],
                ieqs=[
                    [0, 1, 0, 1, -2, 0, 0],  # 1 + 3 - 4 - 4
                    [0, -1, 1, 0, 2, 0, 0],  # -1 + 2 + 4 + 4
                    [0, 1, 1, 0, 0, 0, -1],  # 1 + 2 - 6
                    [0, -1, 0, 0, 1, 0, 1],  # 4 + 6 - 1
                    [args.upper, -4, -8, -5, -4, -5, -2],
                    [-args.lower, 4, 8, 5, 4, 5, 2],
                ] + [[-1] + [0] * i + [1] + [0] * (6 - i - 1)
                     for i in range(6)]),
            embedding=np.array([
                [1, 0, 1, -1, 0, 0],
                [1, 0, 1, 0, 0, 0],
                [1, 1, 0, 0, 0, 0],
                [1, 1, 0, 0, 1, -1],
                [1, 0, 1, -2, 0, 0],
                [-1, 1, 0, 2, 0, 0],
                [-1, 1, 0, 2, 1, 1],
                [0, 1, 0, 1, 1, 0],
                [0, 0, 0, 1, 0, 0],
                [0, 1, 1, 0, 0, 0],
                [0, 0, 0, 0, 1, 1],
                [-1, 0, 0, 1, 0, 1],
            ],
                               dtype=object),
            closed=False,
        )
    elif args.genus == 2 and args.punctures == 0:
        common = dict(
            T=curver.load(2, 1).triangulation,
            P=Polyhedron(eqns=[],
                         ieqs=[
                             [-1, 1, 1, 1, 0, 0, -1],
                             [-1, -1, -1, -1, 1, 1, 1],
                             [args.upper, -7, -8, -7, -5, -5, -6],
                             [-args.lower, 7, 8, 7, 5, 5, 6],
                         ] + [[-1] + [0] * i + [1] + [0] * (6 - i - 1)
                              for i in range(6)]),
            embedding=np.array([
                [2, 2, 2, 0, 0, 0],
                [0, 0, 0, 1, 1, 2],
                [0, 0, 0, 1, 1, 0],
                [0, 0, 0, 0, 1, 1],
                [0, 0, 0, 1, 0, 1],
                [1, 2, 1, 0, 0, 0],
                [1, 0, 1, 0, 0, 0],
                [0, 1, 1, 0, 0, 0],
                [1, 1, 0, 0, 0, 0],
            ]),
            closed=True,
        )
    elif args.genus == 2 and args.punctures == 1:
        common = dict(
            T=curver.load(2, 1).triangulation,
            P=Polyhedron(
                eqns=[],
                ieqs=[
                    [0, 1, 1, 0, -1, 0, 0, 0, 0],  # 1 + 2 - 4
                    [0, 0, -1, 1, 1, 0, 0, 0, 0],  # 3 + 4 - 2
                    [0, 0, 0, 0, 0, 1, 1, 0, -1],  # 5 + 6 - 8
                    [0, 0, 0, 0, 0, 0, -1, 1, 1],  # 7 + 8 - 6
                    [0, 0, 0, -1, -1, 0, 0, 1, 1],  # 7 + 8 - 3 - 4
                    [0, 0, 0, 1, 1, 0, -1, 0, 1],  # 3 + 4 + 8 - 6
                    [0, 0, 0, 1, 1, 0, 1, 0, -1],  # 3 + 4 + 6 - 8
                    [args.upper, -11, -9, -9, -2, -9, -6, -6, -2],
                    [-args.lower, 11, 9, 9, 2, 9, 6, 6, 2],
                ] + [[-1] + [0] * i + [1] + [0] * (8 - i - 1)
                     for i in range(8)]),
            embedding=np.array(
                [
                    [0, 0, 2, 2, 0, 0, 0, 0],  # 3 + 3 + 4 + 4
                    [0, 1, 1, 0, 0, 0, 0, 0],  # 2 + 3
                    [0, -1, 1, 2, 0, 0, 0, 0],  # 3 + 4 + 4 - 2
                    [1, 0, 1, 0, 0, 0, 0, 0],  # 1 + 3
                    [1, 1, 0, 0, 0, 0, 0, 0],  # 1 + 2
                    [0, 0, 0, 0, 0, 1, 1, 0],  # 6 + 7
                    [0, 0, 0, 0, 0, -1, 1, 2],  # 7 + 8 + 8 - 6
                    [0, 0, 0, 0, 1, 0, 1, 0],  # 5 + 7
                    [0, 0, 0, 0, 1, 1, 0, 0],  # 5 + 6
                ],
                dtype=object),
            closed=False,
        )
    elif args.genus == 3 and args.punctures == 0:
        common = dict(
            T=curver.load(3, 1).triangulation,
            P=Polyhedron(
                eqns=[],
                ieqs=[
                    #    a1, b1, c1, a2, b2, c2, a3, b3, c3,  x,  y,  z
                    [-1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, +1, +1],
                    [-2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, +1, +1],
                    [-2, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, +1, +1],
                    [-2, +2, +2, +2, 0, 0, 0, 0, 0, 0, 0, -1, -1],
                    [-1, 0, 0, 0, 0, -1, -1, 0, 0, 0, +1, 0, +1],
                    [-2, 0, 0, 0, 0, -2, 0, 0, 0, 0, +1, 0, +1],
                    [-2, 0, 0, 0, 0, 0, -2, 0, 0, 0, +1, 0, +1],
                    [-2, 0, 0, 0, +2, +2, +2, 0, 0, 0, -1, 0, -1],
                    [-1, 0, 0, 0, 0, 0, 0, 0, -1, -1, +1, +1, 0],
                    [-2, 0, 0, 0, 0, 0, 0, 0, -2, 0, +1, +1, 0],
                    [-2, 0, 0, 0, 0, 0, 0, 0, 0, -2, +1, +1, 0],
                    [-2, 0, 0, 0, 0, 0, 0, +2, +2, +2, -1, -1, 0],
                    [
                        args.upper, -4, -2, -2, -4, -2, -2, -4, -2, -2, -6, -6,
                        -6
                    ],
                    [
                        -args.lower, +4, +2, +2, +4, +2, +2, +4, +2, +2, +6,
                        +6, +6
                    ],
                ] + [[-1] + [0] * i + [1] + [0] * (12 - i - 1)
                     for i in range(12)]),
            embedding=np.array([
                #a1, b1, c1, a2, b2, c2, a3, b3, c3,  x,  y,  z
                [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +1, +1],  # 0
                [0, -1, -1, 0, 0, 0, 0, 0, 0, 0, +1, +1],  # 1
                [0, +1, +1, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 2
                [+1, 0, +1, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 3
                [+1, +1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # 4
                [0, 0, 0, 0, 0, 0, 0, 0, 0, +1, 0, +1],  # 5
                [0, 0, 0, 0, -1, -1, 0, 0, 0, +1, 0, +1],  # 6
                [0, 0, 0, 0, +1, +1, 0, 0, 0, 0, 0, 0],  # 7
                [0, 0, 0, +1, 0, +1, 0, 0, 0, 0, 0, 0],  # 8
                [0, 0, 0, +1, +1, 0, 0, 0, 0, 0, 0, 0],  # 9
                [0, 0, 0, 0, 0, 0, 0, 0, 0, +1, +1, 0],  # 10
                [0, 0, 0, 0, 0, 0, 0, -1, -1, +1, +1, 0],  # 11
                [0, 0, 0, 0, 0, 0, 0, +1, +1, 0, 0, 0],  # 12
                [0, 0, 0, 0, 0, 0, +1, 0, +1, 0, 0, 0],  # 13
                [0, 0, 0, 0, 0, 0, +1, +1, 0, 0, 0, 0],  # 14
            ]),
            closed=True,
        )
    else:
        raise ValueError(
            f'Intrinsic coordinates not known for S_{args.genus},{args.punctures}'
        )

    iterable = (dict() for _ in count())
    process(func, common, iterable, cores=args.cores, path=args.output)
Esempio n. 8
0
def memoized_load(*args):
    return curver.load(*args)
Esempio n. 9
0
 def test_correct_component_of_topological_type_marked(self):
     S = curver.load(2, 8)
     c = S.curves['p_1'] + S.curves['p_3'] + S.curves['p_5'] + S.curves['p_7'] + S.arcs['s_2'].boundary() + S.arcs['s_4'].boundary() + S.arcs['s_6'].boundary() + S.arcs['s_2']
     d = S.curves['p_1'] + S.curves['p_3'] + S.curves['p_5'] + S.curves['p_7'] + S.arcs['s_2'].boundary() + S.arcs['s_4'].boundary() + S.arcs['s_6'].boundary() + S.arcs['s_4']
     self.assertNotEqual(c.topological_type(), d.topological_type())
Esempio n. 10
0
    return curver.load(*args)


@st.composite
def mcgs(draw):
    g, p = draw(st.sampled_from(MCGS))
    return memoized_load(g, p)


@st.composite
def mapping_classes(draw, triangulation=None, power_range=10):
    return draw(encodings(triangulation, power_range, distribution=[2, 3]))


PERIODICS = [
    curver.load(0, 6)('s_0.s_1.s_2.s_3.s_4'),
    curver.load(0, 6)('(s_0.s_1.s_2.s_3.s_4)^2'),
    curver.load(0, 6)('(s_0.s_1.s_2.s_3.s_4)^3'),
    curver.load(0, 6)('s_0.s_1.S_3.S_4'),
    curver.load(1, 1)('a_0.b_0'),
    curver.load(1, 1)('a_0.b_0.a_0'),
    curver.load(2, 1)('a_0.b_0.c_0.b_1'),
    curver.load(2, 1)('a_0.b_0.c_0.b_1.a_1'),
    curver.load(2, 2)('a_0.b_0.c_0.b_1.p_1'),
]


@st.composite
def periodic_mapping_classes(draw):
    return draw(st.sampled_from(PERIODICS))
Esempio n. 11
0
 import argparse
 parser = argparse.ArgumentParser(description='sample curves of at most a given weight')
 parser.add_argument('--num', '-n', type=int, default=1000, help='number of samples to take')
 parser.add_argument('--sig', '-s', type=str, help='signature of triangulation to use')
 parser.add_argument('--genus', '-g', type=int, default=2, help='genus of surface to work over')
 parser.add_argument('--punctures', '-p', type=int, default=0, help='num punctures of surface to work over')
 parser.add_argument('--weight', '-w', type=int, default=1000000, help='max weight of a curve')
 parser.add_argument('--zeros', '-z', type=int, default=35, help='which normal arcs to set to zero')
 parser.add_argument('--cores', '-c', type=int, default=1, help='number of cores to use')
 parser.add_argument('path', type=str, help='path to file to process')
 args = parser.parse_args()
 
 if args.sig is not None:
     T = curver.triangulation_from_sig(args.sig)
 else:
     T = curver.load(args.genus, max(args.punctures, 1)).triangulation
 
 P = get_polyhedron(T, args.weight, zeros=args.zeros)
 num_integral_points = P.integral_points_count(triangulation='cddlib')
 print(P)
 try:
     print('Polytope dimension: {}'.format(P.as_sage().dimension()))
 except AttributeError:
     print('Polytope dimension: Unknown')
 
 print('Drawing from [0, {})'.format(num_integral_points))
 
 common = {'T': T, 'P': P, 'closed': args.punctures == 0, 'labels': [label for label in [i for i in range(T.zeta)] + [~i for i in range(T.zeta)][::-1]]}
 with open(args.path) as F:
     iterable = ({'geometric': eval(line)} for line in F)
     process(from_geometric, common, iterable, cores=args.cores)