def train_models(self, event, corpus, feature_set, **kwargs): print "- training salience models..." sm = SalienceModels() sm.train_models(event, corpus, feature_set, self.key, **kwargs) if not self.check_model_pipeline(event, corpus, feature_set, **kwargs): raise Exception("Model training failed!")
def check_model_pipeline(self, event, corpus, feature_set, **kwargs): sm = SalienceModels() coverage = sm.check_coverage(event, corpus, feature_set, self.key, **kwargs) return coverage == 1