import cv2
import sys
sys.path.append('..')
from cv.image_init import ImageInit
from cv.find_key_point import FindKeyPoint
from cv.hough_line_transform import HoughLines

image_p = ImageInit(320,
                    240,
                    convert_type="BINARY",
                    threshold=120,
                    bitwise_not=False)
capture = cv2.VideoCapture(0)
fkp = FindKeyPoint(True)
hl = HoughLines()
while True:
    ret, frame = capture.read()

    image2 = image_p.processing(frame)
    _, image3 = fkp.get_key_point(image2, frame)
    lines = hl.get_lines(image2, frame)
    print(lines)

    cv2.imshow('frame', image2)
    cv2.imshow("fkp", image3)
    cv2.imshow("hl", frame)
    if cv2.waitKey(1) == ord('q'):
        break
capture.release()
cv2.destroyAllWindows()
Esempio n. 2
0
sys.path.append('..')
from cv.show_images import ShowImage
import time
from cv.image_init import ImageInit
LINE_CAMERA_WIDTH = 320
LINE_CAMERA_HEIGHT = 240
camera = cv2.VideoCapture('/dev/video0')
freq = cv2.getTickFrequency()
show_image = ShowImage()

init = ImageInit(320, 240)
ret, frame = camera.read()

while True:
    t1 = time.perf_counter()
    # 获取一帧
    ret, frame = camera.read()

    show_image.show(frame)

    image = init.processing(frame)
    show_image.show(image, window_name="image")
    t2 = time.perf_counter()
    frame_rate_calc = 1.0 / (t2 - t1)
    print(frame_rate_calc)
    if cv2.waitKey(1) == ord('q'):
        break

camera.release()
cv2.destroyAllWindows()
Esempio n. 3
0
# fl对象用于寻找引导线偏离图像中心的位置,threshold是控制连续白色的的阈值,也就是只有连续多少个白色像素点才认为已经找到引导线
# direction是开始寻找的方向,True是从左边开始寻找,False是右边。当顺时针绕圈时,引导线大概率出现在右边,所以可以选择False。
fl = FollowLine(width=320, height=240, threshold=15, direction=False)

# 串口类,此类最好不要直接使用,而是通过CarController来对车子进行控制
serial = CarSerial(SERIAL, receive=True)
# 此类并没有实现PID控制,而是简单的使用了比例这个参数。(现在这么简单的地图还无需用到PID)
# 如果需要使用PID可以直接调用car目录下的pid类,同时把此类的比例参数设置为1
ctrl = CarController(serial, proportional=0.4)
p_offset = 0
while True:
    ret, frame = camera.read()  # 读取每一帧
    frame = init.resize(frame)  # 把图像缩小,尺寸有ImageInit在初始化时指定
    display.show(frame, "original")
    image = init.processing(frame)  # 对帧进行处理

    # 偏置就是白色线的中心点距离图片中心点的距离,比如320*240的图像,中心点在160
    offset, render_image = fl.get_offset(image,
                                         frame)  # 第一个参数是需要处理的图像,第二个参数是需要渲染的图像

    # 直接把Offset赋值给CarController,对于一般的线没有问题。
    # 但是对于急弯,或者线突然不见了,没办法处理,想稳定的巡线,需要对offset进行处理后再给CarController
    # PID处理offset后再给CarController是一个选择
    # 简单的可以做如下的处理,当找不到线时,会出现offset=-1000的情况,我们可以不理它当它是0.
    if offset == -1000:
        offset = p_offset * 1.5
    else:
        p_offset = offset

    ctrl.follow_line(offset)
            if not (self.event_function is None):
                self.event_function(intersection_number=self.__intersection_number)


if __name__ == '__main__':
    LINE_CAMERA = '/dev/video1'
    LINE_CAMERA_WIDTH = 320
    LINE_CAMERA_HEIGHT = 240
    camera = cv2.VideoCapture(LINE_CAMERA)
    # ret = camera.set(3, LINE_CAMERA_WIDTH)
    # ret = camera.set(4, LINE_CAMERA_HEIGHT)
    im_p = ImageInit(320, 240)
    while True:
        ret, image = camera.read()
        cv2.imshow("image", image)
        image2 = im_p.processing(image)
        # image_processing(image, width=320, height=240, threshold=248, convert_type="BINARY")
        cv2.imshow("test_one", image2)
        fi = FindIntersection(150)
        # data = _find(image2, (160, 230), image)
        data2 = fi._find(image2, (160, 200), image)

        # print(data)
        print(data2)
        cv2.imshow("_render_image", image)

        if cv2.waitKey(1) == ord('q'):
            break
    camera.release()
    cv2.destroyAllWindows()